Liu Yonggang

No Thumbnail Available
Last Name
Liu
First Name
Yonggang
ORCID
0000-0002-0281-9349

Search Results

Now showing 1 - 5 of 5
  • Article
    Coastal ocean wind fields gauged against the performance of an ocean circulation model
    (American Geophysical Union, 2004-07-17) He, Ruoying ; Liu, Yonggang ; Weisberg, Robert H.
    Atmosphere model-derived flux fields are used to force coastal ocean models. Coarse resolution and incomplete boundary layer dynamics limit the accuracy of these forcing fields and hence the performance of the ocean models. We address this limitation for the west Florida shelf using optimal interpolation to blend winds measured in situ with winds produced by model analyses. By improving the coastal wind field we improve the fidelity between currents modeled and currents observed. Comparisons between momentum analyses performed independently from the model and the data demonstrate the fidelity to be of a correct dynamical basis. We conclude that the primary limitation to coastal ocean model performance lies with the boundary conditions.
  • Article
    Sea surface temperature patterns on the West Florida Shelf using growing hierarchical self-organizing maps
    (American Meteorological Society, 2006-02) Liu, Yonggang ; Weisberg, Robert H. ; He, Ruoying
    Neural network analyses based on the self-organizing map (SOM) and the growing hierarchical self-organizing map (GHSOM) are used to examine patterns of the sea surface temperature (SST) variability on the West Florida Shelf from time series of daily SST maps from 1998 to 2002. Four characteristic SST patterns are extracted in the first-layer GHSOM array: winter and summer season patterns, and two transitional patterns. Three of them are further expanded in the second layer, yielding more detailed structures in these seasons. The winter pattern is one of low SST, with isotherms aligned approximately along isobaths. The summer pattern is one of high SST distributed in a horizontally uniform manner. The spring transition includes a midshelf cold tongue. Similar analyses performed on SST anomaly data provide further details of these seasonally varying patterns. It is demonstrated that the GHSOM analysis is more effective in extracting the inherent SST patterns than the widely used EOF method. The underlying patterns in a dataset can be visualized in the SOM array in the same form as the original data, while they can only be expressed in anomaly form in the EOF analysis. Some important features, such as asymmetric SST anomaly patterns of winter/summer and cold/warm tongues, can be revealed by the SOM array but cannot be identified in the lowest mode EOF patterns. Also, unlike the EOF or SOM techniques, the hierarchical structure in the input data can be extracted by the GHSOM analysis.
  • Article
    Bio‐optical, physical, and chemical properties of a loop current eddy in the Gulf of Mexico
    (American Geophysical Union, 2023-02-25) Zhang, Yingjun ; Hu, Chuanmin ; Barnes, Brian B. ; Liu, Yonggang ; Kourafalou, Vassiliki H. ; McGillicuddy, Dennis J. ; Cannizzaro, Jennifer P. ; English, David C. ; Lembke, Chad
    Multi‐sensor data collected with in situ and satellite instruments during August 2015 were used to understand how the three‐dimensional bio‐optical properties of a Loop Current Eddy (LCE) in the Gulf of Mexico (GoM) contrast those of the background waters, and how these properties are related to physical and chemical properties. With a surface radius of ∼150 km and vertical extension to 1,400–1,500 m, the LCE was found to have highly stratified waters in two layers, with one lying just below the mixed layer (16 m) and the other coinciding with the pycnocline (∼120–200 m within the eddy). Strong contrasts were found in the bio‐optical properties (chlorophyll‐a concentration, absorption of particulate and dissolved matters, particulate backscattering, and beam‐c attenuation) across the eddy core, eddy edge, and surrounding waters. Absorption coefficients (400 nm) of surface particulate and dissolved matters were ∼4 times higher in the surrounding waters than in the eddy core, while surface reflectance (400 nm) in the eddy core was ∼7 times higher than in the surrounding waters. The magnitude of deep chlorophyll maximum (DCM) was comparable (0.3–0.33 mg/m3) in all waters, but the depth of DCM in the eddy core (∼115 m) was much deeper than in the surrounding waters (60–75 m). These contrasts were found to correspond to different water masses with different physical (temperature, density, and buoyancy frequency) and chemical properties (salinity and dissolved oxygen concentration), where physical processes (river plume advection and eddy‐induced downwelling) appeared to drive the changes in bio‐optical properties.
  • Article
    Effects of warming and fishing on Atlantic sea scallop (Placopecten magellanicus) size structure in the Mid-Atlantic rotationally closed areas
    (Oxford University Press, 2023-04-17) Zang, Zhengchen ; Ji, Rubao ; Hart, Deborah R. ; Jin, Di ; Chen, Changsheng ; Liu, Yonggang ; Davis, Cabell S.
    The Atlantic sea scallop supports one of the most lucrative fisheries on the Northeast U.S. shelf. Understanding the interannual variability of sea scallop size structure and associated drivers is critically important for projecting the response of population dynamics to climate change and designing coherent fishery management strategies. In this study, we constructed time series of sea scallop size structures in three rotationally closed areas in the Mid-Atlantic Bight (MAB) and decomposed their total variances using the variance partitioning method. The results suggested that the interannual variances in sea scallop size structures were associated more with thermal stress in regions shallower than 60 m but more with fishing mortality in regions deeper than 60 m. The percentages of small (large) size groups increased (decreased) with elevated thermal stress and fishing pressure. We adopted a scope for growth model to build a mechanistic link between temperature and sea scallop size. Model results suggested a gradual decrease in maximum shell height and habitat contraction under warming. This study quantified the relative contributions of thermal stress and fishing mortality to the variance of scallop size structure and discussed the need for adaptive management plans to mitigate potential socioeconomic impacts caused by size structure changes.
  • Article
    Physical characteristics and evolution of a long-lasting mesoscale cyclonic eddy in the Straits of Florida
    (Frontiers Media, 2022-03-30) Zhang, Yingjun ; Hu, Chuanmin ; Kourafalou, Vassiliki ; Liu, Yonggang ; McGillicuddy, Dennis J. ; Barnes, Brian B. ; Hummon, Julia M.
    Ocean eddies along the Loop Current (LC)/Florida Current (FC) front have been studied for decades, yet studies of the entire evolution of individual eddies are rare. Here, satellite altimetry and ocean color observations, Argo profiling float records and shipborne acoustic Doppler current profiler (ADCP) measurements, together with high-resolution simulations from the global Hybrid Coordinate Ocean Model (HYCOM) are used to investigate the physical and biochemical properties, 3-dimensional (3-D) structure, and evolution of a long-lasting cyclonic eddy (CE) in the Straits of Florida (SoF) along the LC/FC front during April–August 2017. An Angular Momentum Eddy Detection Algorithm (AMEDA) is used to detect and track the CE during its evolution process. The long-lasting CE is found to form along the eastern edge of the LC on April 9th, and remained quasi-stationary for about 3 months (April 23 to July 15) off the Dry Tortugas (DT) until becoming much smaller due to its interaction with the FC and topography. This frontal eddy is named a Tortugas Eddy (TE) and is characterized with higher Chlorophyll (Chl) and lower temperature than surrounding waters, with a mean diameter of ∼100 km and a penetrating depth of ∼800 m. The mechanisms that contributed to the growth and evolution of this long-lasting TE are also explored, which reveal the significant role of oceanic internal instability.