Densmore
Casey R.
Densmore
Casey R.
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ThesisDevelopment and testing of the AXBT Realtime Editing System (ARES)(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2020-09) Densmore, Casey R. ; Jayne, Steven R.Airborne eXpendable BathyThermographs (AXBTs) are air-launched, single use temperature-depth probes that telemeter temperature observations as a VHF-modulated frequency. This study describes the AXBT Realtime Editing System (ARES), which was developed to receive and quality control temperature-depth profiles with no external hardware other than a VHF radio receiver. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of demodulated signal transmitted from the AXBT and uses the resulting spectra to identify valid temperature-depth observations. When evaluated using 389 profiles, the ARES data acquisition system produced temperature-depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies, before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1,177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any manual intervention necessary. The ARES Data Acquisition and Profile Editing Systems performed exceptionally well when operationally tested with 44 AXBTs during Hurricane Dorian (2019), enabling high resolution observations across key oceanic features including Dorian’s cold wake and the Gulf Stream. Necessary future work includes improvements on the automated quality control algorithm and evaluation against a more diverse dataset of temperature-depth profiles.
-
ArticleQBO influence on MJO amplitude over the Maritime Continent: Physical mechanisms and seasonality(American Meteorological Society, 2019-01-07) Densmore, Casey R. ; Sanabia, Elizabeth ; Barrett, Bradford S.The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.
-
ArticleDevelopment and testing of the AXBT real-time editing system (ARES)(American Meteorological Society, 2021-01-01) Densmore, Casey R. ; Jayne, Steven R. ; Sanabia, ElizabethAirborne expendable bathythermographs (AXBTs) are air-launched, single-use temperature–depth probes that telemeter temperature observations as VHF-modulated frequencies. This study describes the AXBT Real-Time Editing System (ARES), which is composed of two components: the ARES Data Acquisition System, which receives telemetered temperature–depth profiles with no external hardware other than a VHF radio receiver, and the ARES Profile Editing System, which quality controls AXBT temperature–depth profiles. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of the demodulated signal transmitted from the AXBT. For each segment, temperature is determined from peak frequency and depth from elapsed time since profile start. Valid signals are distinguished from noise by comparing peak signal levels and signal-to-noise ratios to predetermined thresholds. When evaluated using 387 profiles, the ARES Data Acquisition System produced temperature–depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any required manual intervention. Necessary future work includes improvements to the automated quality control algorithm and algorithm evaluation against a broader dataset of temperature–depth profiles from around the world across all seasons.
-
ArticleObservations of the upper ocean from autonomous platforms during the passage of extratropical Cyclone Epsilon (2020)(Oceanography Society, 2024-03-18) Zimmerman, Michael T. ; Jayne, Steven R. ; Rainville, Luc ; Lee, Craig M. ; Toole, John M. ; Edson, James B. ; Clayson, Carol Anne ; Ekholm, Alexander K. ; Densmore, Casey R.Hurricane Epsilon (2020) was a late-season, category-3 tropical cyclone that underwent extratropical transition and became Extratropical Cyclone Epsilon on October 26. The upper ocean response to the passage of the storm was observed by three types of autonomous platforms: an eXpendable Spar buoy, an Air-Launched Autonomous Micro-Observer profiling float, and two Seagliders. Taken together, this array enabled the rare collection of contemporaneous observations of the upper ocean, air-sea interface, and atmospheric boundary layer before, during, and after the passage of the storm. The evidence presented suggests that Extratropical Cyclone Epsilon contributed to breaking down the residual North Atlantic summer stratification regime and accelerated the shift to the prolonged ocean cooling associated with winter. The synergistic capabilities of the observational array are significant for two reasons: (1) by enabling the comparison of complementary atmosphere and ocean observations, taken from different platforms, they permit a comprehensive approach to better understand how storm-induced momentum, heat, and moisture fluxes alter upper ocean structure, and (2) they demonstrate the ability of future, targeted deployments of similar observational arrays to assess the fidelity of coupled ocean-atmosphere-wave numerical prediction models.
-
ArticleOcean temperature observations in Hurricane Dorian (2019)(American Meteorological Society, 2023-06-01) Densmore, Casey R. ; Sanabia, Elizabeth R. ; Jayne, Steven R.Upper-ocean temperatures from 72 airborne expendable bathythermographs (AXBTs) collected during U.S. Air Force Hurricane Hunter flights into Hurricane Dorian (2019) over a 72-h period are examined. Three transects collected behind the storm reveal increased cross-track sea surface temperature gradient magnitudes as Dorian intensified to a category-5 hurricane and slowed while approaching the Bahamas. The cold wake, evident in vertical and horizontal cross sections from in situ and satellite sensors, appears as an expected response to tropical cyclone passage. Atypical, however, is the 2°C surface cooling observed over 36 h in a pair of transects ahead of hurricane force winds in Dorian, likely due to changes in the tropical cyclone’s translation speed and direction and/or proximity to the Gulf Stream and continental shelf. Collocated AXBT pairs document a dynamical regime shift from mixing to upwelling as Dorian slows and turns. Relationships between time-integrated wind stress and sea surface temperature indicate track-relative differences varying with storm translation speed and heading changes, paralleling the shift in cooling dynamics. Significance Statement We studied in situ and satellite ocean temperature observations beneath Hurricane Dorian (2019) as the storm moved slowly, turned north, and weakened near Grand Bahama Island. We found a distinct change in the spatial distribution of cool upper-ocean temperatures beneath the storm, which indicated a shift in the primary cooling mechanism from ocean mixing to upwelling. This mechanism shift is important because hurricanes depend on warm ocean temperatures for energy, and upwelling roughly doubles the area of cooling beneath the storm. Our results highlight the effects of large heading changes on the upper-ocean response beneath tropical cyclones, especially in tandem with slow translation speeds.