Biastoch Arne

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 8 of 8
  • Article
    Influences of Pacific climate variability on decadal subsurface ocean heat content variations in the Indian Ocean
    (American Meteorological Society, 2018-04-30) Jin, Xiaolin ; Kwon, Young-Oh ; Ummenhofer, Caroline C. ; Seo, Hyodae ; Schwarzkopf, Franziska U. ; Biastoch, Arne ; Böning, Claus W. ; Wright, Jonathon S.
    Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
  • Article
    Late 20th century Indian Ocean heat content gain masked by wind forcing
    (American Geophysical Union, 2020-10-26) Ummenhofer, Caroline C. ; Ryan, Svenja ; England, Matthew H. ; Scheinert, Markus ; Wagner, Patrick ; Biastoch, Arne ; Böning, Claus W.
    Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
  • Article
    Marine Heatwaves and their depth structures on the Northeast U.S. continental shelf
    (Frontiers Media, 2022-06-15) Großelindemann, Hendrik ; Ryan, Svenja ; Ummenhofer, Caroline C. ; Martin, Torge ; Biastoch, Arne
    Marine Heatwaves (MHWs) are ocean extreme events, characterized by anomalously high temperatures, which can have significant ecological impacts. The Northeast U.S. continental shelf is of great economical importance as it is home to a highly productive ecosystem. Local warming rates exceed the global average and the region experienced multiple MHWs in the last decade with severe consequences for regional fisheries. Due to the lack of subsurface observations, the depth-extent of MHWs is not well-known, which hampers the assessment of impacts on pelagic and benthic ecosystems. This study utilizes a global ocean circulation model with a high-resolution (1/20°) nest in the Atlantic to investigate the depth structure of MHWs and associated drivers on the Northeast U.S. continental shelf. It is shown that MHWs exhibit varying spatial extents, with some only occurring at depth. The highest intensities are found around 100 m depth with temperatures exceeding the climatological mean by up to 7°C, while surface intensities are typically smaller (around 3°C). Distinct vertical structures are associated with different spatial MHW patterns and drivers. Investigation of the co-variability of temperature and salinity reveals that over 80% of MHWs at depth (>50 m) coincide with extreme salinity anomalies. Two case studies provide insight into opposing MHW patterns at the surface and at depth, being forced by anomalous air-sea heat fluxes and Gulf Stream warm core ring interaction, respectively. The results highlight the importance of local ocean dynamics and the need to realistically represent them in climate models.
  • Article
    Depth structure of Ningaloo Niño/Niña events and associated drivers
    (American Meteorological Society, 2021-02-04) Ryan, Svenja ; Ummenhofer, Caroline C. ; Gawarkiewicz, Glen G. ; Wagner, Patrick ; Scheinert, Markus ; Biastoch, Arne ; Böning, Claus W.
    Marine heatwaves along the coast of Western Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward; however, little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global ocean general circulation model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958 and 2016, with a focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant, and extend down to 300-m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, that is more common and persistent during the negative phase of the interdecadal Pacific oscillation. It is shown that Ningaloo Niños during La Niña phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere–ocean feedbacks, without a clear imprint on salinity and velocity.
  • Article
    Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events
    (American Meteorological Society, 2017-02-15) Ummenhofer, Caroline C. ; Biastoch, Arne ; Böning, Claus W.
    The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
  • Article
    Composition and variability of the Denmark Strait Overflow Water in a high-resolution numerical model hindcast simulation
    (John Wiley & Sons, 2017-04-04) Behrens, Erik ; Våge, Kjetil ; Harden, Benjamin E. ; Biastoch, Arne ; Böning, Claus W.
    The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
  • Article
    Lagrangian views of the pathways of the Atlantic meridional overturning circulation
    (American Geophysical Union, 2019-07-19) Bower, Amy S. ; Lozier, M. Susan ; Biastoch, Arne ; Drouin, Kimberley L. ; Foukal, Nicholas P. ; Furey, Heather H. ; Lankhorst, Matthias ; Rühs, Siren ; Zou, Sijia
    The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
  • Article
    Lagrangian ocean analysis : fundamentals and practices
    (Elsevier, 2017-11-24) van Sebille, Erik ; Griffies, Stephen M. ; Abernathey, Ryan ; Adams, Thomas P. ; Berloff, Pavel S. ; Biastoch, Arne ; Blanke, Bruno ; Chassignet, Eric P. ; Cheng, Yu ; Cotter, Colin J. ; Deleersnijder, Eric ; Döös, Kristofer ; Drake, Henri F. ; Drijfhout, Sybren ; Gary, Stefan F. ; Heemink, Arnold W. ; Kjellsson, Joakim ; Koszalka, Inga M. ; Lange, Michael ; Lique, Camille ; MacGilchrist, Graeme ; Marsh, Robert ; Mayorga-Adame, Claudia G. ; McAdam, Ronan ; Nencioli, Francesco ; Paris, Claire B. ; Piggott, Matthew D. ; Polton, Jeff ; Rühs, Siren ; Shah, Syed H.A.M. ; Thomas, Matthew D. ; Wang, Jinbo ; Wolfram, Phillip J. ; Zanna, Laure ; Zika, Jan D.
    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.