Frey Karen E.

No Thumbnail Available
Last Name
Frey
First Name
Karen E.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Article
    Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica
    (John Wiley & Sons, 2013-01-25) Criscitiello, Alison S. ; Das, Sarah B. ; Evans, Matthew J. ; Frey, Karen E. ; Conway, Howard ; Joughin, Ian ; Medley, Brooke ; Steig, Eric J.
    Our understanding of past sea-ice variability is limited by the short length of satellite and instrumental records. Proxy records can extend these observations but require further development and validation. We compare methanesulfonic acid (MSA) and chloride (Cl–) concentrations from a new firn core from coastal West Antarctica with satellite-derived observations of regional sea-ice concentration (SIC) in the Amundsen Sea (AS) to evaluate spatial and temporal correlations from 2002–2010. The high accumulation rate (~39 g∙cm–2∙yr–1) provides monthly resolved records of MSA and Cl–, allowing detailed investigation of how regional SIC is recorded in the ice-sheet stratigraphy. Over the period 2002–2010 we find that the ice-sheet chemistry is significantly correlated with SIC variability within the AS and Pine Island Bay polynyas. Based on this result, we evaluate the use of ice-core chemistry as a proxy for interannual polynya variability in this region, one of the largest and most persistent polynya areas in Antarctica. MSA concentrations correlate strongly with summer SIC within the polynya regions, consistent with MSA at this site being derived from marine biological productivity during the spring and summer. Cl– concentrations correlate strongly with winter SIC within the polynyas as well as some regions outside the polynyas, consistent with Cl– at this site originating primarily from winter sea-ice formation. Spatial correlations were generally insignificant outside of the polynya areas, with some notable exceptions. Ice-core glaciochemical records from this dynamic region thus may provide a proxy for reconstructing AS and Pine Island Bay polynya variability prior to the satellite era.
  • Article
    Tropical Pacific influence on the source and transport of marine aerosols to West Antarctica
    (American Meteorological Society, 2014-02-01) Criscitiello, Alison S. ; Das, Sarah B. ; Karnauskas, Kristopher B. ; Evans, Matthew J. ; Frey, Karen E. ; Joughin, Ian ; Steig, Eric J. ; McConnell, Joseph R. ; Medley, Brooke
    The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.
  • Article
    Antarctic surface melting dynamics : enhanced perspectives from radar scatterometer data
    (American Geophysical Union, 2012-05-17) Trusel, Luke D. ; Frey, Karen E. ; Das, Sarah B.
    Antarctic ice sheet surface melting can regionally influence ice shelf stability, mass balance, and glacier dynamics, in addition to modulating near-surface physical and chemical properties over wide areas. Here, we investigate variability in surface melting from 1999 to 2009 using radar backscatter time series from the SeaWinds scatterometer aboard the QuikSCAT satellite. These daily, continent-wide observations are explored in concert with in situ meteorological records to validate a threshold-based melt detection method. Radar backscatter decreases during melting are significantly correlated with in situ positive degree-days as well as meltwater production determined from energy balance modeling at Neumayer Station, East Antarctica. These results support the use of scatterometer data as a diagnostic indicator of melt intensity (i.e., the relative liquid water production during melting). Greater spatial and temporal melting detected relative to previous passive microwave-based studies is attributed to a higher sensitivity of the scatterometer instrument. Continental melt intensity variability can be explained in part by the dynamics of the Southern Annular Mode and the Southern Oscillation Index, and extreme melting events across the Ross Ice Shelf region may be associated with El Niño conditions. Furthermore, we find that the Antarctic Peninsula accounts for only 20% of Antarctic melt extent but greater than 50% of the total Antarctic melt intensity. Over most areas, annual melt duration and intensity are proportional. However, regional and localized distinctions exist where the melt intensity metric provides greater insight into melting dynamics than previously obtainable with other remote sensing techniques.
  • Article
    Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal
    (American Geophysical Union, 2012-08-21) Tank, Suzanne E. ; Frey, Karen E. ; Striegl, Robert G. ; Raymond, Peter A. ; Holmes, Robert M. ; McClelland, James W. ; Peterson, Bruce J.
    While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3−) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3−. We explored landscape-level controls on DOC and HCO3− flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3− flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3− yields, while increasing permafrost extent was associated with decreases in HCO3−. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.
  • Article
    Change points detected in decadal and seasonal trends of outlet glacier terminus positions across West Greenland
    (MDPI, 2020-11-07) York, Ashley V. ; Frey, Karen E. ; Jamali, Sadegh ; Das, Sarah B.
    We investigated the change in terminus position between 1985 and 2015 of 17 marine-terminating glaciers that drain into Disko and Uummannaq Bays, West Greenland, by manually digitizing over 5000 individual frontal positions from over 1200 Landsat images. We find that 15 of 17 glacier termini retreated over the study period, with ~80% of this retreat occurring since 2000. Increased frequency of Landsat observations since 2000 allowed for further investigation of the seasonal variability in terminus position. We identified 10 actively retreating glaciers based on a significant positive relationship between glaciers with cumulative retreat >300 m since 2000 and their average annual amplitude (seasonal range) in terminus position. Finally, using the Detecting Breakpoints and Estimating Segments in Trend (DBEST) program, we investigated whether the 2000–2015 trends in terminus position were explained by the occurrence of change points (significant trend transitions). Based on the change point analysis, we found that nine of 10 glaciers identified as actively retreating also underwent two or three periods of change, during which their terminus positions were characterized by increases in cumulative retreat. Previous literature suggests potential relationships between our identified change dates with anomalous ocean conditions, such as low sea ice concentration and high sea surface temperatures, and our change durations with individual fjord geometry.
  • Article
    Satellite-based estimates of Antarctic surface meltwater fluxes
    (John Wiley & Sons, 2013-12-04) Trusel, Luke D. ; Frey, Karen E. ; Das, Sarah B. ; Munneke, Peter Kuipers ; van den Broeke, Michiel R.
    This study generates novel satellite-derived estimates of Antarctic-wide annual (1999–2009) surface meltwater production using an empirical relationship between radar backscatter from the QuikSCAT (QSCAT) satellite and melt calculated from in situ energy balance observations. The resulting QSCAT-derived melt fluxes significantly agree with output from the regional climate model RACMO2.1 and with independent ground-based observations. The high-resolution (4.45 km) QSCAT-based melt fluxes uniquely detect interannually persistent and intense melt (>400 mm water equivalent (w.e.) year−1) on interior Larsen C Ice Shelf that is not simulated by RACMO2.1. This supports a growing understanding of the importance of a föhn effect in this region and quantifies the resulting locally enhanced melting that is spatially consistent with recently observed Larsen C thinning. These new results highlight important cryosphere-climate interactions and processes that are presently not fully captured by the coarser-resolution (27 km) regional climate model.