Cooley Sarah R.

No Thumbnail Available
Last Name
First Name
Sarah R.

Search Results

Now showing 1 - 16 of 16
  • Article
    Carbon cycling in the North American coastal ocean: a synthesis
    (European Geosciences Union, 2019-03-27) Fennel, Katja ; Alin, Simone R. ; Barbero, Leticia ; Evans, Wiley ; Bourgeois, Timothée ; Cooley, Sarah R. ; Dunne, John P. ; Feely, Richard A. ; Hernandez-Ayon, Jose Martin ; Hu, Xinping ; Lohrenz, Steven E. ; Muller-Karger, Frank E. ; Najjar, Raymond G. ; Robbins, Lisa ; Shadwick, Elizabeth H. ; Siedlecki, Samantha A. ; Steiner, Nadja ; Sutton, Adrienne J. ; Turk, Daniela ; Vlahos, Penny ; Wang, Zhaohui Aleck
    A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying the net air–sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air–sea CO2 flux, informed by more than a decade of observations, indicate that the North American Exclusive Economic Zone (EEZ) acts as a sink of 160±80 Tg C yr−1, although this flux is not well constrained. The Arctic and sub-Arctic, mid-latitude Atlantic, and mid-latitude Pacific portions of the EEZ account for 104, 62, and −3.7 Tg C yr−1, respectively, while making up 51 %, 25 %, and 24 % of the total area, respectively. Combining the net uptake of 160±80 Tg C yr−1 with an estimated carbon input from land of 106±30 Tg C yr−1 minus an estimated burial of 65±55 Tg C yr−1 and an estimated accumulation of dissolved carbon in EEZ waters of 50±25 Tg C yr−1 implies a carbon export of 151±105 Tg C yr−1 to the open ocean. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result, conditions favoring the dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.
  • Preprint
    Narratives can motivate environmental action : the Whiskey Creek ocean acidification story
    ( 2014-04) Kelly, Ryan P. ; Cooley, Sarah R. ; Klinger, Terrie
    Even when environmental data quantify the risks and benefits of delayed responses to rapid anthropogenic change, institutions rarely respond promptly. We propose that narratives complementing environmental datasets can motivate responsive environmental policy. To explore this idea, we relate a case study in which a narrative of economic loss due to regionally rapid ocean acidification—an anthropogenic change—helped connect knowledge with action. We pose three hypotheses to explain why narratives might be particularly effective in linking science to environmental policy, drawing from the literature of economics, environmental policy, and cognitive psychology. It seems that yet-untold narratives may hold similar potential for strengthening the feedback between environmental data and policy and motivating regional responses to other environmental problems.
  • Book chapter
    Addressing ocean acidification as part of sustainable ocean development
    ( 2012-10-09) Cooley, Sarah R. ; Mathis, Jeremy T.
    Many of the declarations and outcome documents from prior United Nations international meetings address ocean issues such as fishing, pollution, and climate change, but they do not address ocean acidification. This progressive alteration of seawater chemistry caused by uptake of atmospheric carbon dioxide (CO2) is an emerging issue of concern that has potential consequences for marine ecosystems and the humans that depend on them. Addressing ocean acidification will require mitigation of global CO2 emissions at the international level accompanied by regional marine resource use adaptations that reduce the integrated pressure on marine ecosystems while the global community works towards implementing permanent CO2 emissions reductions. Addressing ocean acidification head-on is necessary because it poses a direct challenge to sustainable development targets such as the Millennium Development Goals, and it cannot be addressed adequately with accords or geoengineering plans that do not specifically decrease atmospheric carbon dioxide levels. Here, we will briefly review the current state of ocean acidification knowledge and identify several mitigation and adaptation strategies that should be considered along with reductions in CO2 emissions to reduce the near-term impacts of ocean acidification. Our goal is to present potential options while identifying some of their inherent weaknesses to inform decisionmaking discussions, rather than to recommend adoption of specific policies. While the reduction of CO2 emissions should be the number one goal of the international community, it is unlikely that the widespread changes and infrastructure redevelopment necessary to accomplish this will be achieved soon, before ocean acidification’s short-term impacts become significant. Therefore, a multi-faceted approach must be employed to address this growing problem.
  • Working Paper
    Frequently asked questions about ocean acidification
    (U.S. Ocean Carbon and Biogeochemistry Program and the UK Ocean Acidification Research Programme., 2012-09-15) Cooley, Sarah R. ; Mathis, Jeremy T. ; Yates, Kimberly K. ; Turley, Carol
    Over the past five years, no other issue has received more attention in the marine science community than ocean acidification. Ocean acidification is a multi-disciplinary research area that encompasses topics such as chemistry, paleontology, biology, ecology, biogeochemistry, modeling, social sciences and economics. With this complexity and the continued development of our understanding in mind, the U.S. Ocean Carbon and Biogeochemistry (OCB; program, with support from the UK Ocean Acidification Research Programme (UKOA;, has updated and expanded a list of frequently asked questions (FAQs) that were developed in 2010 by OCB, the European Project on Ocean Acidification (EPOCA), and UKOA. Equipped with the most up-to-date information, the global ocean acidification research community has drafted concise, understandable summaries of the current knowledge. The responses were carefully vetted during an open peer-review and revision process to ensure readability without any loss of scientific accuracy. This effort was international in scale, with 63 scientists from 47 institutions and 12 countries contributing to the process.
  • Article
    Ocean acidification risk assessment for Alaska’s fishery sector
    (Elsevier, 2014-07-14) Mathis, Jeremy T. ; Cooley, Sarah R. ; Lucey, Noelle ; Colt, Steve ; Ekstrom, Julia ; Hurst, Tom ; Hauri, Claudine ; Evans, Wiley ; Cross, Jessica N. ; Feely, Richard A.
    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state’s commercial fisheries and traditional subsistence way of life. Prior studies of OA’s potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska’s federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.
  • Article
    Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery
    (Public Libary of Science, 2018-09-21) Rheuban, Jennie E. ; Doney, Scott C. ; Cooley, Sarah R. ; Hart, Deborah R.
    Ocean acidification has the potential to significantly impact both aquaculture and wild-caught mollusk fisheries around the world. In this work, we build upon a previously published integrated assessment model of the US Atlantic Sea Scallop (Placopecten magellanicus) fishery to determine the possible future of the fishery under a suite of climate, economic, biological, and management scenarios. We developed a 4x4x4x4 hypercube scenario framework that resulted in 256 possible combinations of future scenarios. The study highlights the potential impacts of ocean acidification and management for a subset of future climate scenarios, with a high CO2 emissions case (RCP8.5) and lower CO2 emissions and climate mitigation case (RCP4.5). Under RCP4.5 and the highest impact and management scenario, ocean acidification has the potential to reduce sea scallop biomass by approximately 13% by the end of century; however, the lesser impact scenarios cause very little change. Under RCP8.5, sea scallop biomass may decline by more than 50% by the end of century, leading to subsequent declines in industry landings and revenue. Management-set catch limits improve the outcomes of the fishery under both climate scenarios, and the addition of a 10% area closure increases future biomass by more than 25% under the highest ocean acidification impacts. However, increased management still does not stop the projected long-term decline of the fishery under ocean acidification scenarios. Given our incomplete understanding of acidification impacts on P. magellanicus, these declines, along with the high value of the industry, suggest population-level effects of acidification should be a clear research priority. Projections described in this manuscript illustrate both the potential impacts of ocean acidification under a business-as-usual and a moderately strong climate-policy scenario. We also illustrate the importance of fisheries management targets in improving the long-term outcome of the P. magellanicus fishery under potential global change.
  • Article
    Ocean acidification’s potential to alter global marine ecosystem services
    (Oceanography Society, 2009-12) Cooley, Sarah R. ; Kite-Powell, Hauke L. ; Doney, Scott C.
    Ocean acidification lowers the oceanic saturation states of carbonate minerals and decreases the calcification rates of some marine organisms that provide a range of ecosystem services such as wild fishery and aquaculture harvests, coastal protection, tourism, cultural identity, and ecosystem support. Damage to marine ecosystem services by ocean acidification is likely to disproportionately affect developing nations and coastal regions, which often rely more heavily on a variety of marine-related economic and cultural activities. Losses of calcifying organisms or changes in marine food webs could significantly alter global marine harvests, which provided 110 million metric tons of food for humans and were valued at US$160 billion in 2006. Some of the countries most dependent on seafood for dietary protein include developing island nations with few agricultural alternatives. Aquaculture, especially of mollusks, may meet some of the future protein demand of economically developing, growing populations, but ocean acidification may complicate aquaculture of some species. By 2050, both population increases and changes in carbonate mineral saturation state will be greatest in low-latitude regions, multiplying the stresses on tropical marine ecosystems and societies. Identifying costeffective adaptive strategies to mitigate the costs associated with ocean acidification requires development of transferable management strategies that can be tailored to meet the specific needs of regional human and marine communities.
  • Preprint
    A decision support tool for response to global change in marine systems : the IMBER-ADApT Framework
    ( 2014-05) Bundy, Alida ; Chuenpagdee, Ratana ; Cooley, Sarah R. ; Defeo, Omar ; Glaeser, Bernhard ; Guillotreau, Patrice ; Isaacs, Moenieba ; Mitsutaku, Makino ; Perry, R. Ian
    Global change is occurring now, often with consequences far beyond those anticipated. Although there is a wide range of assessment approaches available to address specific aspects of global change, there is currently no framework to identify what governance responses have worked and where, what has facilitated change, and what preventative options are possible. To respond to this need, we present an integrated assessment framework that builds on knowledge learned from past experience of responses to global change, to enable decision makers, researchers, managers and local stakeholders to: (1) make decisions efficiently; (2) triage and improve their responses; and (3) evaluate where to most effectively allocate resources to reduce vulnerability and enhance resilience of coastal peoples. This integrated assessment framework, IMBER-ADApT is intended to enable and enhance decision making through the development a typology of case studies providing lessons on how the natural, social and governance systems respond to the challenges of global change. The typology is developed from a database of case studies detailing the systems affected by change, responses to change and, critically, an appraisal of these responses, generating knowledge-based solutions that can be applied to other comparable situations. Fisheries, which suffer from multiple pressures, are the current focus of the proposed framework, but it could be applied to a wide range of global change issues. IMBER-ADApT has the potential to contribute to timely, cost-effective policy and governing decision making and responses. It offers cross-scale learning to help ameliorate, and eventually prevent, loss of livelihoods, food sources and habitat.
  • Preprint
    Anticipating ocean acidification's economic consequences for commercial fisheries
    ( 2009-05) Cooley, Sarah R. ; Doney, Scott C.
    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of U.S. commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion U.S. annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the U.S. gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.
  • Preprint
    Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow
    ( 2011-05-20) Cooley, Sarah R. ; Lucey, Noelle ; Kite-Powell, Hauke L. ; Doney, Scott C.
    Atmospheric carbon dioxide (CO2) emissions from human industrial activities are causing a progressive alteration of seawater chemistry, termed ocean acidification, that has decreased seawater pH and carbonate ion concentration markedly since the Industrial Revolution. Many marine organisms, like molluscs and corals, build hard shells and skeletons using carbonate ions, and they exhibit negative overall responses to ocean acidification. This adds to other chronic and acute environmental pressures and promotes shifts away from calcifierrich communities. In this study, we examine the possible implications of ocean acidification on mollusc harvests worldwide by examining present production, consumption, and export and by relating those data to present and future surface ocean chemistry forecast by a coupled-climate ocean model (Community Climate System 3.1; CCSM3). We identify the “transition decade” when future ocean chemistry will distinctly differ from that of today (2010), and when mollusc harvest levels similar to those of the present cannot be guaranteed if present ocean chemistry is a significant determinant of today’s mollusc production. We assess nations’ vulnerability to ocean acidification-driven decreases in mollusc harvests by comparing nutritional and economic dependences on mollusc harvests, overall societal adaptability, and the amount of time until the transition decade. Projected transition decades for individual countries will occur 10-50 years after 2010. Countries with low adaptability, high nutritional or economic dependence on molluscs, rapidly approaching transition decades, or rapidly growing populations will therefore be most vulnerable to ocean acidification-driven mollusc harvest decreases. These transition decades suggest how soon nations should implement strategies, such as increased aquaculture of resilient species, to help maintain current per capita mollusc harvests.
  • Article
    A code of conduct is imperative for ocean carbon dioxide removal research
    (Frontiers Media, 2022-05-02) Loomis, Rebecca ; Cooley, Sarah R. ; Collins, James R. ; Engler, Simon ; Suatoni, Lisa
    As the impacts of rising temperatures mount and the global transition to clean energy advances only gradually, scientists and policymakers are looking towards carbon dioxide removal (CDR) methods to prevent the worst impacts of climate change. Attention has increasingly focused on ocean CDR techniques, which enhance or restore marine systems to sequester carbon. Ocean CDR research presents the risk of uncertain impacts to human and environmental welfare, yet there are no domestic regulations aimed at ensuring the safety and efficacy of this research. A code of conduct that establishes principles of responsible research, fairness, and equity is needed in this field. This article presents fifteen key components of an ocean CDR research code of conduct.
  • Article
    Ocean acidification : present conditions and future changes in a high-CO2 world
    (Oceanography Society, 2009-12) Feely, Richard A. ; Doney, Scott C. ; Cooley, Sarah R.
    The uptake of anthropogenic CO2 by the global ocean induces fundamental changes in seawater chemistry that could have dramatic impacts on biological ecosystems in the upper ocean. Estimates based on the Intergovernmental Panel on Climate Change (IPCC) business-as-usual emission scenarios suggest that atmospheric CO2 levels could approach 800 ppm near the end of the century. Corresponding biogeochemical models for the ocean indicate that surface water pH will drop from a pre-industrial value of about 8.2 to about 7.8 in the IPCC A2 scenario by the end of this century, increasing the ocean’s acidity by about 150% relative to the beginning of the industrial era. In contemporary ocean water, elevated CO2 will also cause substantial reductions in surface water carbonate ion concentrations, in terms of either absolute changes or fractional changes relative to pre-industrial levels. For most open-ocean surface waters, aragonite undersaturation occurs when carbonate ion concentrations drop below approximately 66 μmol kg-1. The model projections indicate that aragonite undersaturation will start to occur by about 2020 in the Arctic Ocean and 2050 in the Southern Ocean. By 2050, all of the Arctic will be undersaturated with respect to aragonite, and by 2095, all of the Southern Ocean and parts of the North Pacific will be undersaturated. For calcite, undersaturation occurs when carbonate ion concentration drops below 42 μmol kg-1. By 2095, most of the Arctic and some parts of the Bering and Chukchi seas will be undersaturated with respect to calcite. However, in most of the other ocean basins, the surface waters will still be saturated with respect to calcite, but at a level greatly reduced from the present.
  • Article
    Towards improved socio-economic assessments of ocean acidification’s impacts
    (Springer, 2012-08-21) Hilmi, Nathalie ; Allemand, Denis ; Dupont, Sam ; Safa, Alain ; Haraldsson, Gunnar ; Nunes, Paulo A. L. D. ; Moore, Chris ; Hattam, Caroline ; Reynaud, Stephanie ; Hall-Spencer, Jason M. ; Fine, Maoz ; Turley, Carol ; Jeffree, Ross ; Orr, James C. ; Munday, Philip L. ; Cooley, Sarah R.
    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.
  • Article
    Ocean and coastal acidification off New England and Nova Scotia
    (The Oceanography Society, 2015-06) Gledhill, Dwight K. ; White, Meredith M. ; Salisbury, Joseph E. ; Thomas, Helmuth ; Mlsna, Ivy ; Liebman, Matthew ; Mook, Bill ; Grear, Jason S. ; Candelmo, Allison C. ; Chambers, R. Christopher ; Gobler, Christopher J. ; Hunt, Christopher W. ; King, Andrew L. ; Price, Nichole N. ; Signorini, Sergio R. ; Stancioff, Esperanza ; Stymiest, Cassie ; Wahle, Richard A. ; Waller, Jesica D. ; Rebuck, Nathan D. ; Wang, Zhaohui Aleck ; Capson, Todd L. ; Morrison, J. Ruairidh ; Cooley, Sarah R. ; Doney, Scott C.
    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acidify the region’s poorly buffered coastal waters. Despite the apparent vulnerability of these waters, and fisheries’ and mariculture’s significant dependence on calcifying species, the community lacks the ability to confidently predict how the region’s ecosystems will respond to continued ocean and coastal acidification. Here, we discuss ocean and coastal acidification processes specific to New England coastal and Nova Scotia shelf waters and review current understanding of the biological consequences most relevant to the region. We also identify key research and monitoring needs to be addressed and highlight existing capacities that should be leveraged to advance a regional understanding of ocean and coastal acidification.
  • Article
    An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming
    (Public Library of Science, 2015-05-06) Cooley, Sarah R. ; Rheuban, Jennie E. ; Hart, Deborah R. ; Luu, Victoria ; Glover, David M. ; Hare, Jonathan A. ; Doney, Scott C.
    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.
  • Article
    Attributing ocean acidification to major carbon producers
    (IOP Publishing, 2019-12-11) Licker, Rachel ; Ekwurzel, Brenda ; Doney, Scott C. ; Cooley, Sarah R. ; Lima, Ivan D. ; Heede, Richard ; Frumhoff, Peter C.
    Recent research has quantified the contributions of CO2 and CH4 emissions traced to the products of major fossil fuel companies and cement manufacturers to global atmospheric CO2, surface temperature, and sea level rise. This work has informed societal considerations of the climate responsibilities of these major industrial carbon producers. Here, we extend this work to historical (1880–2015) and recent (1965–2015) acidification of the world's ocean. Using an energy balance carbon-cycle model, we find that emissions traced to the 88 largest industrial carbon producers from 1880–2015 and 1965–2015 have contributed ~55% and ~51%, respectively, of the historical 1880–2015 decline in surface ocean pH. As ocean acidification is not spatially uniform, we employ a three-dimensional ocean model and identify five marine regions with large declines in surface water pH and aragonite saturation state over similar historical (average 1850–1859 to average 2000–2009) and recent (average 1960–1969 to average of 2000–2009) time periods. We characterize the biological and socioeconomic systems in these regions facing loss and damage from ocean acidification in the context of climate change and other stressors. Such analysis can inform societal consideration of carbon producer responsibility for current and near-term risks of further loss and damage to human communities dependent on marine ecosystems and fisheries vulnerable to ocean acidification.