Wilson Samuel T.

No Thumbnail Available
Last Name
Wilson
First Name
Samuel T.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean
    (Wiley, 2020-05-20) Sosa, Oscar A. ; Burrell, Timothy J. ; Wilson, Samuel T. ; Foreman, Rhea K. ; Karl, David M. ; Repeta, Daniel J.
    In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4 and C2H4 in the water column, and between phosphate and the relative abundance of the C‐P lyase marker gene phnJ . In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4 and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4 and C2H4 in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4 and C2H4 in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.
  • Article
    Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle
    (Institute of Electrical and Electronics Engineers, 2020-10-13) Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Ryan, John P. ; Barone, Benedetto ; Preston, Christina M. ; Roman, Brent ; Raanan, Ben-Yair ; Marin, Roman ; O’Reilly, Thomas C. ; Rueda, Carlos A. ; Pargett, Douglas ; Yamahara, Kevan M. ; Poulos, Steve ; Romano, Anna ; Foreman, Gabe ; Ramm, Hans ; Wilson, Samuel T. ; DeLong, Edward F. ; Karl, David M. ; Birch, James M. ; Bellingham, James G. ; Scholin, Christopher A.
    Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.
  • Article
    Ideas and perspectives: a strategic assessment of methane and nitrous oxide measurements in the marine environment
    (European Geosciences Union, 2020-11-26) Wilson, Samuel T. ; Al-Haj, Alia N. ; Bourbonnais, Annie ; Frey, Claudia ; Fulweiler, Robinson W. ; Kessler, John D. ; Marchant, Hannah K. ; Milucka, Jana ; Ray, Nicholas E. ; Suntharalingam, Parvadha ; Thornton, Brett F. ; Upstill-Goddard, Robert C. ; Weber, Thomas S. ; Arévalo-Martínez, Damian L. ; Bange, Hermann W. ; Benway, Heather M. ; Bianchi, Daniele ; Borges, Alberto V. ; Chang, Bonnie X. ; Crill, Patrick M. ; del Valle, Daniela A. ; Farías, Laura ; Joye, Samantha B. ; Kock, Annette ; Labidi, Jabrane ; Manning, Cara C. ; Pohlman, John W. ; Rehder, Gregor ; Sparrow, Katy J. ; Tortell, Philippe D. ; Treude, Tina ; Valentine, David L. ; Ward, Bess B. ; Yang, Simon ; Yurganov, Leonid N.
    In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics – namely production, consumption, and net emissions – is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climate-active trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment.
  • Article
    Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles
    (John Wiley & Sons, 2015-05-22) Nicholson, David P. ; Wilson, Samuel T. ; Doney, Scott C. ; Karl, David M.
    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg−1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m−3 d−1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m−2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.
  • Article
    Short-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA : a case study of summer 2012
    (John Wiley & Sons, 2015-08-13) Wilson, Samuel T. ; Barone, Benedetto ; Ascani, Francois ; Bidigare, Robert R. ; Church, Matthew J. ; del Valle, Daniela A. ; Dyhrman, Sonya T. ; Ferroon, Sara ; Fitzsimmons, Jessica N. ; Juranek, Laurie W. ; Kolber, Zbigniew S. ; Letelier, Ricardo M. ; Martinez-Garcia, Sandra ; Nicholson, David P. ; Richards, Kelvin J. ; Rii, Yoshimi M. ; Rouco, Monica ; Viviani, Donn A. ; White, Angelicque E. ; Zehr, Jonathan P. ; Karl, David M.
    Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.
  • Article
    Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii
    (American Society for Microbiology, 2019-12-11) Inomura, Keisuke ; Deutsch, Curtis A. ; Wilson, Samuel T. ; Masuda, Takako ; Lawrenz, Evelyn ; Bučinská, Lenka ; Sobotka, Roman ; Gauglitz, Julia M. ; Saito, Mak A. ; Prášil, Ondřej ; Follows, Michael J.
    Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2. Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2. The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m−2 s−1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m−2 s−1. This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.
  • Article
    An intercomparison of oceanic methane and nitrous oxide measurements
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-10-05) Wilson, Samuel T. ; Bange, Hermann W. ; Arévalo-Martínez, Damian L. ; Barnes, Jonathan ; Borges, Alberto V. ; Brown, Ian ; Bullister, John L. ; Burgos, Macarena ; Capelle, David W. ; Casso, Michael A. ; de la Paz, Mercedes ; Farías, Laura ; Fenwick, Lindsay ; Ferrón, Sara ; Garcia, Gerardo ; Glockzin, Michael ; Karl, David M. ; Kock, Annette ; Laperriere, Sarah ; Law, Cliff S. ; Manning, Cara C. ; Marriner, Andrew ; Myllykangas, Jukka-Pekka ; Pohlman, John W. ; Rees, Andrew P. ; Santoro, Alyson E. ; Tortell, Philippe D. ; Upstill-Goddard, Robert C. ; Wisegarver, David P. ; Zhang, Gui-Ling ; Rehder, Gregor
    Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.