Mercier
Herlé
Mercier
Herlé
No Thumbnail Available
5 results
Search Results
Now showing
1 - 5 of 5
-
ArticleCorrection to “Using altimetry to help explain patchy changes in hydrographic carbon measurements”(American Geophysical Union, 2009-12-09) Rodgers, Keith B. ; Key, Robert M. ; Gnanadesikan, Anand ; Sarmiento, Jorge L. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Glover, David M. ; Ishida, Akio ; Ishii, Masao ; Jacobson, Andrew R. ; Monaco, Claire Lo ; Maier-Reimer, Ernst ; Mercier, Herlé ; Metzl, Nicolas ; Perez, Fiz F. ; Rios, Aida F. ; Wanninkhof, Rik ; Wetzel, Patrick ; Winn, Christopher D. ; Yamanaka, Yasuhiro
-
ArticleOverturning in the Subpolar North Atlantic Program : a new international ocean observing system(American Meteorological Society, 2017-04-24) Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke Femke ; de Steur, Laura ; deYoung, Brad ; Fischer, Jürgen ; Gary, Stefan F. ; Greenan, Blair J. W. ; Heimbach, Patrick ; Holliday, Naomi Penny ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Johnson, Helen L. ; Karstensen, Johannes ; Li, Feili ; Lin, Xiaopei ; Mackay, Neill ; Marshall, David P. ; Mercier, Herlé ; Myers, Paul G. ; Pickart, Robert S. ; Pillar, Helen R. ; Straneo, Fiamma ; Thierry, Virginie ; Weller, Robert A. ; Williams, Richard G. ; Wilson, Christopher G. ; Yang, Jiayan ; Zhao, Jian ; Zika, Jan D.For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
-
ArticleSubpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation(Nature Research, 2021-05-24) Li, Feili ; Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke F. ; deYoung, Brad ; Fraser, Neil ; Fried, Nora ; Han, Guoqi ; Holliday, Naomi Penny ; Holte, James W. ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Jones, Sam ; Johnson, Clare ; Karstensen, Johannes ; Le Bras, Isabela A. ; Lherminier, Pascale ; Lin, Xiaopei ; Mercier, Herlé ; Oltmanns, Marilena ; Pacini, Astrid ; Petit, Tillys ; Pickart, Robert S. ; Rayner, Darren ; Straneo, Fiamma ; Thierry, Virginie ; Visbeck, Martin ; Yashayaev, Igor ; Zhou, ChunChanges in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.
-
ArticleUsing altimetry to help explain patchy changes in hydrographic carbon measurements(American Geophysical Union, 2009-09-18) Rodgers, Keith B. ; Key, Robert M. ; Gnanadesikan, Anand ; Sarmiento, Jorge L. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Glover, David M. ; Ishida, Akio ; Ishii, Masao ; Jacobson, Andrew R. ; Monaco, Claire Lo ; Maier-Reimer, Ernst ; Mercier, Herlé ; Metzl, Nicolas ; Perez, Fiz F. ; Rios, Aida F. ; Wanninkhof, Rik ; Wetzel, Patrick ; Winn, Christopher D. ; Yamanaka, YasuhiroHere we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
-
ArticleAtlantic meridional overturning circulation: Observed transport and variability(Frontiers Media, 2019-06-07) Frajka-Williams, Eleanor ; Ansorge, Isabelle ; Baehr, Johanna ; Bryden, Harry L. ; Chidichimo, Maria Paz ; Cunningham, Stuart A. ; Danabasoglu, Gokhan ; Dong, Shenfu ; Donohue, Kathleen A. ; Elipot, Shane ; Heimbach, Patrick ; Holliday, Naomi Penny ; Hummels, Rebecca ; Jackson, Laura C. ; Karstensen, Johannes ; Lankhorst, Matthias ; Le Bras, Isabela A. ; Lozier, M. Susan ; McDonagh, Elaine L. ; Meinen, Christopher S. ; Mercier, Herlé ; Moat, Bengamin I. ; Perez, Renellys ; Piecuch, Christopher G. ; Rhein, Monika ; Srokosz, Meric ; Trenberth, Kevin E. ; Bacon, Sheldon ; Forget, Gael ; Goni, Gustavo J. ; Kieke, Dagmar ; Koelling, Jannes ; Lamont, Tarron ; McCarthy, Gerard D. ; Mertens, Christian ; Send, Uwe ; Smeed, David A. ; Speich, Sabrina ; van den Berg, Marcel ; Volkov, Denis L. ; Wilson, Christopher G.The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.