Crocker
Daniel E.
Crocker
Daniel E.
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleOntogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris)(Frontiers Media, 2014-06-10) Moore, Colby D. ; Crocker, Daniel E. ; Fahlman, Andreas ; Moore, Michael J. ; Willoughby, Darryn S. ; Robbins, Kathleen A. ; Kanatous, Shane B. ; Trumble, Stephen J.Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.
-
ArticleChanges in serum adipokines during natural extended fasts in female northern elephant seals(Elsevier, 2021-03-27) Rzucidlo, Caroline L. ; Sperou, Emily S. ; Holser, Rachel R. ; Khudyakov, Jane I. ; Costa, Daniel P. ; Crocker, Daniel E.Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.