Jenouvrier Stephanie

No Thumbnail Available
Last Name
Jenouvrier
First Name
Stephanie
ORCID
0000-0003-3324-2383

Search Results

Now showing 1 - 20 of 36
  • Preprint
    Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change
    ( 2017-05) Jenouvrier, Stephanie ; Garnier, Jimmy ; Patout, Florian ; Desvillettes, Laurent
    Species endangered by rapid climate change may persist by tracking their optimal habitat; this depends on their dispersal characteristics. The Emperor Penguin (EP) is an Antarctic seabird threatened by future sea ice change, currently under consideration for listing under the US Endangered Species Act. Indeed, a climate-dependent-demographic model without dispersion projects that many EP colonies will decline by more than 50% from their current size by 2100, resulting in a dramatic global population decline. Here we assess whether or not dispersion could act as an ecological rescue, i.e. reverse the anticipated global population decline projected by a model without dispersion. To do so, we integrate de22 tailed dispersal processes in a metapopulation model|specifically, dispersal stages, dispersal distance, habitat structure, informed dispersal behaviors, and density-dependent dispersion rates. For EP, relative to a scenario without dispersion, dispersal can either offset or accelerate climate driven population declines; dispersal may increase the global population by up to 31% or decrease it by 65%, depending on the rate of emigration and distance individuals disperse. By developing simpler theoretical models, we demonstrate that the global population dynamic depends on the global landscape quality. In addition, the interaction among dispersal processes - dispersion rates, dispersal distance, and dispersal decisions - that influence landscape occupancy, impacts the global population dynamics. Our analyses bound the impact of between-colony emigration on global population size, and provides intuition as to the direction of population change depending on the EP dispersal characteristics. Our general model is flexible such that multiple dispersal scenarios could be implemented for a wide range of species to improve our understanding and predictions of species persistence under future global change.
  • Article
    The interplay between hunting rate, hunting selectivity, and reproductive strategies shapes population dynamics of a large carnivore
    (Wiley Open Access, 2021-05-05) Van de Walle, Joanie ; Pelletier, Fanie ; Zedrosser, Andreas ; Swenson, Jon E. ; Jenouvrier, Stephanie ; Bischof, Richard
    Harvest, through its intensity and regulation, often results in selection on female reproductive traits. Changes in female traits can have demographic consequences, as they are fundamental in shaping population dynamics. It is thus imperative to understand and quantify the demographic consequences of changes in female reproductive traits to better understand and anticipate population trajectories under different harvest intensities and regulations. Here, using a dynamic, frequency-dependent, population model of the intensively hunted brown bear (Ursus arctos) population in Sweden, we quantify and compare population responses to changes in four reproductive traits susceptible to harvest-induced selection: litter size, weaning age, age at first reproduction, and annual probability to reproduce. We did so for different hunting quotas and under four possible hunting regulations: (i) no individuals are protected, (ii) mothers but not dependent offspring are protected, (iii) mothers and dependent offspring of the year (cubs) are protected, and (iv) entire family groups are protected (i.e., mothers and dependent offspring of any age). We found that population growth rate declines sharply with increasing hunting quotas. Increases in litter size and the probability to reproduce have the greatest potential to affect population growth rate. Population growth rate increases the most when mothers are protected. Adding protection on offspring (of any age), however, reduces the availability of bears for hunting, which feeds back to increase hunting pressure on the nonprotected categories of individuals, leading to reduced population growth. Finally, we found that changes in reproductive traits can dampen population declines at very high hunting quotas, but only when protecting mothers. Our results illustrate that changes in female reproductive traits may have context-dependent consequences for demography. Thus, to predict population consequences of harvest-induced selection in wild populations, it is critical to integrate both hunting intensity and regulation, especially if hunting selectivity targets female reproductive strategies.
  • Article
    The call of the emperor penguin: legal responses to species threatened by climate change
    (Wiley, 2021-08-03) Jenouvrier, Stephanie ; Che-Castaldo, Judy ; Wolf, Shaye ; Holland, Marika M. ; Labrousse, Sara ; LaRue, Michelle ; Wienecke, Barbara ; Fretwell, Peter T. ; Barbraud, Christophe ; Greenwald, Noah ; Stroeve, Julienne ; Trathan, Phil N.
    Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
  • Preprint
    Effect of extreme sea surface temperature events on the demography of an age-structured albatross population
    ( 2017-02) Pardo, Deborah ; Jenouvrier, Stephanie ; Weimerskirch, Henri ; Barbraud, Christophe
    Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log(λs) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log(λs) compared to changes in mean. By contrast, the mean had a positive impact on log(λs). The historical SST mean was lower than the optimal SST value for which log(λs) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This ‘climate safety margin’ (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log(λs), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.
  • Article
    Detecting climate signals in populations across life histories
    (Wiley, 2021-12-20) Jenouvrier, Stephanie ; Long, Matthew C. ; Coste, Christophe F. D. ; Holland, Marika M. ; Gamelon, Marlène ; Yoccoz, Nigel G. ; Saether, Bernt-Erik
    Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics (ToEpop). We identify the dependence of (ToEpop)on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on (ToEpop). We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
  • Article
    Antarctic penguin response to habitat change as Earth's troposphere reaches 2°C above preindustrial levels
    (Ecological Society of America, 2010-02) Ainley, David G. ; Russell, Joellen ; Jenouvrier, Stephanie ; Woehler, Eric ; Lyver, Philip O'B. ; Fraser, William R. ; Kooyman, Gerald L.
    We assess the response of pack ice penguins, Emperor (Aptenodytes forsteri) and Adélie (Pygoscelis adeliae), to habitat variability and, then, by modeling habitat alterations, the qualitative changes to their populations, size and distribution, as Earth's average tropospheric temperature reaches 2°C above preindustrial levels (ca. 1860), the benchmark set by the European Union in efforts to reduce greenhouse gases. First, we assessed models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) on penguin performance duplicating existing conditions in the Southern Ocean. We chose four models appropriate for gauging changes to penguin habitat: GFDL-CM2.1, GFDL-CM2.0, MIROC3.2(hi-res), and MRI-CGCM2.3.2a. Second, we analyzed the composited model ENSEMBLE to estimate the point of 2°C warming (2025–2052) and the projected changes to sea ice coverage (extent, persistence, and concentration), sea ice thickness, wind speeds, precipitation, and air temperatures. Third, we considered studies of ancient colonies and sediment cores and some recent modeling, which indicate the (space/time) large/centennial-scale penguin response to habitat limits of all ice or no ice. Then we considered results of statistical modeling at the temporal interannual-decadal scale in regard to penguin response over a continuum of rather complex, meso- to large-scale habitat conditions, some of which have opposing and others interacting effects. The ENSEMBLE meso/decadal-scale output projects a marked narrowing of penguins' zoogeographic range at the 2°C point. Colonies north of 70° S are projected to decrease or disappear: 50% of Emperor colonies (40% of breeding population) and 75% of Adélie colonies (70% of breeding population), but limited growth might occur south of 73° S. Net change would result largely from positive responses to increase in polynya persistence at high latitudes, overcome by decreases in pack ice cover at lower latitudes and, particularly for Emperors, ice thickness. Adélie Penguins might colonize new breeding habitat where concentrated pack ice diverges and/or disintegrating ice shelves expose coastline. Limiting increase will be decreased persistence of pack ice north of the Antarctic Circle, as this species requires daylight in its wintering areas. Adélies would be affected negatively by increasing snowfall, predicted to increase in certain areas owing to intrusions of warm, moist marine air due to changes in the Polar Jet Stream.
  • Preprint
    Interacting effects of unobserved heterogeneity and individual stochasticity in the life-history of the Southern fulmar
    ( 2017-09-19) Jenouvrier, Stephanie ; Aubry, Lise M. ; Barbraud, Christophe ; Weimerskirch, Henri ; Caswell, Hal
    Individuals are heterogeneous in many ways. Some of these differences are incorporated as individual states (e.g., age, size, breeding status) in population models. However, substantial amounts of heterogeneity may remain unaccounted for, due to genetic, maternal, or environmental factors. Such unobserved heterogeneity (UH) affects the behavior of heterogeneous cohorts via intra-cohort selection and contributes to inter-individual variance in demographic outcomes such as longevity and lifetime reproduction. Variance is also produced by individual stochasticity, due to random events in the life cycle of wild organisms, yet no study thus far has attempted to decompose the variance in demographic outcomes into contributions from unobserved heterogeneity and individual stochasticity for an animal population in the wild. We developed a stage-classified matrix population model for the Southern fulmar breeding on Ile des Pétrels, Antarctica. We applied multi-event, multi-state markrecapture methods to estimate a finite mixture model accounting for UH in all vital rates and Markov chain methods to calculate demographic outcomes. Finally, we partitioned the variance in demographic outcomes into contributions from unobserved heterogeneity and individual stochasticity. We identify three UH groups, differing substantially in longevity, lifetime reproductive output, age at first reproduction, and in the proportion of the life spent in each reproductive state. 14% of individuals at fledging have a delayed but high probability of recruitment and extended reproductive lifespan. 67% of individuals are less likely to reach adulthood, recruit late and skip breeding often but have the highest adult survival rate. 19% of individuals recruit early and attempt to breed often. They are likely to raise their offspring successfully, but experience a relatively short lifespan. Unobserved heterogeneity only explains a small fraction of the variances in longevity (5.9%), age at first reproduction (3.7%) and lifetime reproduction (22%). UH can affect the entire life cycle, including survival, development, and reproductive rates, with consequences over the lifetime of individuals and impacts on cohort dynamics. The respective role of unobserved heterogeneity versus individual stochasticity varies greatly among demographic outcomes. We discuss the implication of our finding for the gradient of life-history strategies observed among species and argue that individual differences should always be accounted for in demographic studies of wild populations.
  • Article
    The emperor penguin - vulnerable to projected rates of warming and sea ice loss
    (Elsevier, 2019-10-08) Trathan, Phil N. ; Wienecke, Barbara ; Barbraud, Christophe ; Jenouvrier, Stephanie ; Kooyman, Gerald L. ; Le Bohec, Céline ; Ainley, David G. ; Ancel, André ; Zitterbart, Daniel ; Chown, Steven L. ; LaRue, Michelle ; Cristofari, Robin ; Younger, Jane ; Clucas, Gemma V. ; Bost, Charles-Andre ; Brown, Jennifer A. ; Gillett, Harriet J. ; Fretwell, Peter T.
    We argue the need to improve climate change forecasting for ecology, and importantly, how to relate long-term projections to conservation. As an example, we discuss the need for effective management of one species, the emperor penguin, Aptenodytes forsteri. This species is unique amongst birds in that its breeding habit is critically dependent upon seasonal fast ice. Here, we review its vulnerability to ongoing and projected climate change, given that sea ice is susceptible to changes in winds and temperatures. We consider published projections of future emperor penguin population status in response to changing environments. Furthermore, we evaluate the current IUCN Red List status for the species, and recommend that its status be changed to Vulnerable, based on different modelling projections of population decrease of ≥50% over the current century, and the specific traits of the species. We conclude that current conservation measures are inadequate to protect the species under future projected scenarios. Only a reduction in anthropogenic greenhouse gas emissions will reduce threats to the emperor penguin from altered wind regimes, rising temperatures and melting sea ice; until such time, other conservation actions are necessary, including increased spatial protection at breeding sites and foraging locations. The designation of large-scale marine spatial protection across its range would benefit the species, particularly in areas that have a high probability of becoming future climate change refugia. We also recommend that the emperor penguin is listed by the Antarctic Treaty as an Antarctic Specially Protected Species, with development of a species Action Plan.
  • Preprint
    Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions
    ( 2017-02) van de Pol, Martijn ; Jenouvrier, Stephanie ; Cornelissen, Johannes H. C. ; Visser, Marcel E.
    More extreme climatic events (ECEs) are amongst the most prominent consequences of climate change. Despite a long‐standing recognition of the importance of ECEs by paleo‐ecologists and macro‐evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.
  • Article
    Quantifying the causes and consequences of variation in satellite-derived population indices: a case study of emperor penguins
    (Wiley Open Access, 2021-08-11) Labrousse, Sara ; Iles, David T. ; Viollat, Lise ; Fretwell, Peter T. ; Trathan, Phil N. ; Zitterbart, Daniel ; Jenouvrier, Stephanie ; LaRue, Michelle
    Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of wildlife populations, especially in remote regions where traditional surveys are limited by logistical challenges. Emperor penguins Aptenodytes forsteri were the first species to have a circumpolar population estimate derived via VHR imagery. Here we address an untested assumption from Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation of the colony for the year the image was taken. We evaluated satellite-related and environmental variables that might influence the calculated area of penguin pixels to reduce uncertainties in satellite-based estimates of emperor penguin populations in the future. We focused our analysis on multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We replicated methods in Fretwell et al. (2012), which included using supervised classification tools in ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as ‘population indices’) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting that penguin pixel areas calculated from a single image may not provide a complete understanding of colony size for that year. Thus, we further highlight the important roles of: (i) sun azimuth and elevation through image resolution and (ii) penguin patchiness (aggregated vs. distributed) on the calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-seasonal variability in population indices, simulations indicate that reliable, robust population trends are possible by including satellite-related and environmental covariates and aggregating indices across time and space. Our work provides additional parameters that should be included in future models of population size for emperor penguins.
  • Article
    Extreme climate events and individual heterogeneity shape life-history traits and population dynamics
    (Ecological Society of America, 2015-11) Jenouvrier, Stephanie ; Peron, Clara ; Weimerskirch, Henri
    Extreme climatic conditions and their ecological impacts are currently emerging as critical features of climate change. We studied extreme sea ice condition (ESIC) and found it impacts both life-history traits and population dynamics of an Antarctic seabird well beyond ordinary variability. The Southern Fulmar (Fulmarus glacialoides) is an ice-dependent seabird, and individuals forage near the ice edge. During an extreme unfavorable year (when sea ice area is reduced and distance between ice edge and colony is high), observed foraging trips were greater in distance and duration. As a result, adults brought less food to their chicks, which fledged in the poorest body condition. During such unfavorable years, breeding success was extremely low and population growth rate (λ) was greatly reduced. The opposite pattern occurred during extreme favorable years. Previous breeding status had a strong influence on life-history traits and population dynamics, and their responses to extreme conditions. Successful breeders had a higher chance of breeding and raising their chick successfully during the following breeding season as compared to other breeding stages, regardless of environmental conditions. Consequently, they coped better with unfavorable ESIC. The effect of change in successful breeder vital rates on λ was greater than for other stages' vital rates, except for pre-breeder recruitment probabilities, which most affected λ. For environments characterized by ordinary sea ice conditions, interindividual differences were more likely to persist over the life of individuals and randomness in individual pathways was low, suggesting individual heterogeneity in vital rates arising from innate or acquired phenotypic traits. Additionally, unfavorable ESIC tended to exacerbate individual differences in intrinsic quality, expressed through differences in reproductive status. We discuss the strong effects of ESIC on Southern Fulmar life-history traits in an evolutionary context. ESICs strongly affect fitness components and act as potentially important agents of natural selection of life histories related to intrinsic quality and intermittent breeding. In addition, recruitment is a highly plastic trait that, if heritable, could have a critical role in evolution of life histories. Finally, we find that changes in the frequency of extreme events may strongly impact persistence of Southern Fulmar populations.
  • Article
    Temporal correlations among demographic parameters are ubiquitous but highly variable across species.
    (Wiley, 2022-05-24) Fay, Remi ; Hamel, Sandra ; van de Pol, Martijn ; Gaillard, Jean-Michel ; Yoccoz, Nigel G. ; Acker, Paul ; Authier, Matthieu ; Larue, Benjamin ; Le Coeur, Christie ; Macdonald, Kaitlin R. ; Nicol-Harper, Alex ; Barbraud, Christophe ; Bonenfant, Christophe ; Van Vuren, Dirk H. ; Cam, Emmanuelle ; Delord, Karine ; Gamelon, Marlène ; Moiron, Maria ; Pelletier, Fanie ; Rotella, Jay J. ; Teplitsky, Celine ; Visser, Marcel E. ; Wells, Caitlin P. ; Wheelwright, Nathaniel T. ; Jenouvrier, Stephanie ; Saether, Bernt-Erik
    Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.
  • Article
    Dynamic fine-scale sea icescape shapes adult emperor penguin foraging habitat in east Antarctica
    (American Geophysical Union, 2019-09-16) Labrousse, Sara ; Fraser, Alexander D. ; Sumner, Michael ; Tamura, Takeshi ; Pinaud, David ; Wienecke, Barbara ; Kirkwood, Roger ; Ropert-Coudert, Yan ; Reisinger, Ryan ; Jonsen, Ian ; Porter‐Smith, Rick ; Barbraud, Christophe ; Bost, Charles-Andre ; Ji, Rubao ; Jenouvrier, Stephanie
    The emperor penguin, an iconic species threatened by projected sea ice loss in Antarctica, has long been considered to forage at the fast ice edge, presumably relying on large/yearly persistent polynyas as their main foraging habitat during the breeding season. Using newly developed fine‐scale sea icescape data and historical penguin tracking data, this study for the first time suggests the importance of less recognized small openings, including cracks, flaw leads and ephemeral short‐term polynyas, as foraging habitats for emperor penguins. The tracking data retrieved from 47 emperor penguins in two different colonies in East Antarctica suggest that those penguins spent 23% of their time in ephemeral polynyas and did not use the large/yearly persistent, well‐studied polynyas, even if they occur much more regularly with predictable locations. These findings challenge our previous understanding of emperor penguin breeding habitats, highlighting the need for incorporating fine‐scale seascape features when assessing the population persistence in a rapidly changing polar environment.
  • Preprint
    Impacts of climate change on avian populations
    ( 2013-03-27) Jenouvrier, Stephanie
    This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding and Predicting) approach, which provides a general framework where an enhanced understanding of climate-population processes, along with improved long-term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its bene t using birds as examples. Birds are one of the best-studied groups and a large number of studies have de- tected climate impacts on vital rates (i.e. life history traits, such as survival, matura- tion, or breeding, a ecting changes in population size and composition) and population abundance. These studies reveal multifaceted e ects of climate with direct, indirect, time- lagged and non-linear e ects. However, few studies integrate these e ects into a climate-dependent population model to understand the respective role of climate vari- ables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the \population robustness to climate change." The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate models are rare. Population projections hinge on selecting a multi-climate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully speci ed uncertainties in both demographic and climate processes.
  • Article
    Effects of climate change and fisheries bycatch on Southern Ocean seabirds : a review
    (Inter-Research, 2012-05-21) Barbraud, Christophe ; Rolland, Virginie ; Jenouvrier, Stephanie ; Nevoux, Marie ; Delord, Karine ; Weimerskirch, Henri
    Over the last century, major climate changes and intense human exploitation of natural living resources have occurred in the Southern Ocean, potentially affecting its ecosystems up to top marine predators. Fisheries may also directly affect seabirds through bycatch and additional food resources provided by discards. The past 20 yr of research has seen an increasing number of studies investigating the effects of climate change and fisheries activities on Southern Ocean seabirds. Here, we review these studies in order to identify patterns in changes in distribution, phenology, demography and population dynamics in response to changes in climate and fisheries bycatch. Shifts in distribution and breeding phenology were documented in parallel to increases in sea-surface temperatures and changes in sea-ice cover. Above all warm sea-surface temperatures negatively affected demographic parameters, although exceptions were found. Relationships suggest non-linear effects of sea-ice cover on demographic parameters and population dynamics, with optimum sea-ice cover conditions appearing to be the rule. Fishing efforts were mainly negatively related to survival rates, and only for a few species positively related to breeding success. A handful of studies found that chronic mortality of immature birds due to fisheries negatively affected populations. Climate factors and fisheries bycatch may simultaneously affect demographic parameters in a complex way, which can be integrated in population models to project population trajectories under future climate or fisheries scenarios. Needed are studies that integrate other environmental factors, trophic levels, foraging behaviour, climate−fisheries interactions, and the mechanisms underlying phenotypic plasticity, such as some pioneering studies conducted elsewhere.
  • Article
    Fathers matter : male body mass affects life-history traits in a size-dimorphic seabird
    (The Royal Society, 2017-05-03) Cornioley, Tina ; Jenouvrier, Stephanie ; Borger, Luca ; Weimerskirch, Henri ; Ozgul, Arpat
    One of the predicted consequences of climate change is a shift in body mass distributions within animal populations. Yet body mass, an important component of the physiological state of an organism, can affect key life-history traits and consequently population dynamics. Over the past decades, the wandering albatross—a pelagic seabird providing bi-parental care with marked sexual size dimorphism—has exhibited an increase in average body mass and breeding success in parallel with experiencing increasing wind speeds. To assess the impact of these changes, we examined how body mass affects five key life-history traits at the individual level: adult survival, breeding probability, breeding success, chick mass and juvenile survival. We found that male mass impacted all traits examined except breeding probability, whereas female mass affected none. Adult male survival increased with increasing mass. Increasing adult male mass increased breeding success and mass of sons but not of daughters. Juvenile male survival increased with their chick mass. These results suggest that a higher investment in sons by fathers can increase their inclusive fitness, which is not the case for daughters. Our study highlights sex-specific differences in the effect of body mass on the life history of a monogamous species with bi-parental care.
  • Article
    Strong sea surface cooling in the eastern equatorial Pacific and implications for Galápagos Penguin conservation
    (John Wiley & Sons, 2015-08-06) Karnauskas, Kristopher B. ; Jenouvrier, Stephanie ; Brown, Christopher W. ; Murtugudde, Raghu
    The Galápagos is a flourishing yet fragile ecosystem whose health is particularly sensitive to regional and global climate variations. The distribution of several species, including the Galápagos Penguin, is intimately tied to upwelling of cold, nutrient-rich water along the western shores of the archipelago. Here we show, using reliable, high-resolution sea surface temperature observations, that the Galápagos cold pool has been intensifying and expanding northward since 1982. The linear cooling trend of 0.8°C/33 yr is likely the result of long-term changes in equatorial ocean circulation previously identified. Moreover, the northward expansion of the cold pool is dynamically consistent with a slackening of the cross-equatorial component of the regional trade winds—leading to an equatorward shift of the mean position of the Equatorial Undercurrent. The implied change in strength and distribution of upwelling has important implications for ongoing and future conservation measures in the Galápagos.
  • Preprint
    Rethinking ‘normal’ : the role of stochasticity in the phenology of a synchronously breeding seabird
    ( 2017-12) Youngflesh, Casey ; Jenouvrier, Stephanie ; Hinke, Jefferson T. ; DuBois, Lauren ; St. Leger, Judy A. ; Trivelpiece, Wayne Z. ; Trivelpiece, Susan G. ; Lynch, Heather J.
    Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic, and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability of breeding phenology of Adélie penguins under fixed environmental conditions, and to use those data to identify a ‘null model’ appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modeled as a function of year, individual, and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the 53 wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual’s effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology.
  • Article
    Mating behavior, population growth, and the operational sex ratio : a periodic two‐sex model approach
    (University of Chicago Press, 2010-04-21) Jenouvrier, Stephanie ; Caswell, Hal ; Barbraud, Christophe ; Weimerskirch, Henri
    We present a new approach to modeling two‐sex populations, using periodic, nonlinear two‐sex matrix models. The models project the population growth rate, the population structure, and any ratio of interest (e.g., operational sex ratio). The periodic formulation permits inclusion of highly seasonal behavioral events. A periodic product of the seasonal matrices describes annual population dynamics. The model is nonlinear because mating probability depends on the structure of the population. To study how the vital rates influence population growth rate, population structure, and operational sex ratio, we used sensitivity analysis of frequency‐dependent nonlinear models. In nonlinear two‐sex models the vital rates affect growth rate directly and also indirectly through effects on the population structure. The indirect effects can sometimes overwhelm the direct effects and are revealed only by nonlinear analysis. We find that the sensitivity of the population growth rate to female survival is negative for the emperor penguin, a species with highly seasonal breeding behavior. This result could not occur in linear models because changes in population structure have no effect on per capita reproduction. Our approach is applicable to ecological and evolutionary studies of any species in which males and females interact in a seasonal environment.
  • Article
    Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot
    (Nature Publishing Group, 2018-03-02) Borowicz, Alex ; McDowall, Philip ; Youngflesh, Casey ; Sayre-McCord, Thomas ; Clucas, Gemma V. ; Herman, Rachael ; Forrest, Steven ; Rider, Melissa ; Schwaller, Mathew ; Hart, Tom ; Jenouvrier, Stephanie ; Polito, Michael J. ; Singh, Hanumant ; Lynch, Heather J.
    Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.