Matrai
Patricia A.
Matrai
Patricia A.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
DatasetConcentrations of DMS, DMSPp, DMSPd, & DMSOd in relation to ocean acidification [H+] during the KOSMOS 2014 mesocosm experiment off Gran Canaria(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-26) Archer, Stephen D. ; Countway, Peter ; Matrai, Patricia A.Concentrations of DMS, DMSPp, DMSPd, & DMSOd in relation to ocean acidification [H+] during the KOSMOS 2014 mesocosm experiment off Gran Canaria. The full experiment took place from 23rd September to 25th November 2014. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/769302
-
ArticlePossible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment(Nature Research, 2021-03-23) Wei, Chong ; Hoffmann-Kuhnt, Matthias ; Au, Whitlow W. L. ; Ho, Abel Zhong Hao ; Matrai, Patricia A. ; Feng, Wen ; Ketten, Darlene R. ; Zhang, YuDolphins use their biosonar to discriminate objects with different features through the returning echoes. Cross-modal matching experiments were conducted with a resident bottlenose dolphin (Tursiops aduncus). Four types of objects composed of different materials (water-filled PVC pipes, air-filled PVC pipes, foam ball arrays, and PVC pipes wrapped in closed-cell foam) were used in the experiments, respectively. The size and position of the objects remained the same in each case. The data collected in the experiment showed that the dolphin’s matching accuracy was significantly different across the cases. To gain insight into the underlying mechanism in the experiments, we used finite element methods to construct two-dimensional target detection models of an echolocating dolphin in the vertical plane, based on computed tomography scan data. The acoustic processes of the click’s interaction with the objects and the surrounding media in the four cases were simulated and compared. The simulation results provide some possible explanations for why the dolphin performed differently when discriminating the objects that only differed in material composition in the previous matching experiments.
-
ArticleA compilation of global bio-optical in situ data for ocean-colour satellite applications - version two(Copernicus Publications, 2019-07-15) Valente, André ; Sathyendranath, Shubha ; Brotas, Vanda ; Groom, Steven ; Grant, Michael ; Taberner, Malcolm ; Antoine, David ; Arnone, Robert ; Balch, William M. ; Barker, Kathryn ; Barlow, Ray ; Belanger, Simon ; Berthon, Jean-François ; Besiktepe, Sukru ; Borsheim, Yngve ; Bracher, Astrid ; Brando, Vittorio ; Canuti, Elisabetta ; Chavez, Francisco P. ; Cianca, Andrés ; Claustre, Hervé ; Clementson, Lesley ; Crout, Richard ; Frouin, Robert ; García-Soto, Carlos ; Gibb, Stuart W. ; Gould, Richard ; Hooker, Stanford B. ; Kahru, Mati ; Kampel, Milton ; Klein, Holger ; Kratzer, Susanne ; Kudela, Raphael M. ; Ledesma, Jesus ; Loisel, Hubert ; Matrai, Patricia A. ; McKee, David ; Mitchell, Brian G. ; Moisan, Tiffany ; Muller-Karger, Frank E. ; O'Dowd, Leonie ; Ondrusek, Michael ; Platt, Trevor ; Poulton, Alex J. ; Repecaud, Michel ; Schroeder, Thomas ; Smyth, Timothy ; Smythe-Wright, Denise ; Sosik, Heidi M. ; Twardowski, Michael ; Vellucci, Vincenzo ; Voss, Kenneth ; Werdell, Jeremy ; Wernand, Marcel ; Wright, Simon ; Zibordi, GiuseppeA global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT and GeP&CO) and span the period from 1997 to 2018. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenization, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) was propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented, and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version (Valente et al., 2016). The compiled data are available at https://doi.org/10.1594/PANGAEA.898188 (Valente et al., 2019).
-
ArticleParameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle(American Geophysical Union, 2021-02-15) Jackson, Rebecca L. ; Gabric, Albert ; Matrai, Patricia A. ; Woodhouse, Matthew T. ; Cropp, Roger ; Jones, Graham B. ; Deschaseaux, Elisabeth S. M. ; Omori, Yuko ; McParland, Erin L. ; Swan, Hilton B. ; Tanimoto, HiroshiBiogenic emissions of dimethylsulfide (DMS) are an important source of sulfur to the atmosphere, with implications for aerosol formation and cloud albedo over the ocean. Natural aerosol sources constitute the largest uncertainty in estimates of aerosol radiative forcing and climate and thus, an improved understanding of DMS sources is needed. Coral reefs are strong point sources of DMS; however, this coral source of biogenic sulfur is not explicitly included in climatologies or in model simulations. Consequently, the role of coral reefs in local and regional climate remains uncertain. We aim to improve the representation of tropical coral reefs in DMS databases by calculating a climatology of seawater DMS concentration (DMSw) and sea-air flux in the Great Barrier Reef (GBR), Australia. DMSw is calculated from remotely sensed observations of sea surface temperature and photosynthetically active radiation using a multiple linear regression model derived from field observations of DMSw in the GBR. We estimate that coral reefs and lagoon waters in the GBR (∼347,000 km2) release 0.03–0.05 Tg yr−1 of DMS (0.02 Tg yr−1 of sulfur). Based on this estimate, global tropical coral reefs (∼600,000 km2) could emit 0.08 Tg yr−1 of DMS (0.04 Tg yr−1 of sulfur), with the potential to influence the local radiative balance.