Huguet Carme

No Thumbnail Available
Last Name
Huguet
First Name
Carme
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record
    (Copernicus Publications on behalf of the European Geosciences Union, 2010-02-05) Zonneveld, K. A. F. ; Versteegh, G. J. M. ; Kasten, S. ; Eglinton, Timothy I. ; Emeis, Kay-Christian ; Huguet, Carme ; Koch, Boris P. ; de Lange, Gert J. ; de Leeuw, J. W. ; Middelburg, Jack J. ; Mollenhauer, Gesine ; Prahl, Fredrick G. ; Rethemeyer, J. ; Wakeham, Stuart G.
    The present paper is the result of a workshop sponsored by the DFG Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System", the International Graduate College EUROPROX, and the Alfred Wegener Institute for Polar and Marine Research. The workshop brought together specialists on organic matter degradation and on proxy-based environmental reconstruction. The paper deals with the main theme of the workshop, understanding the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record. Special attention is paid to (A) the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules, (B) the impact of selective OM preservation on the interpretation of proxies for marine palaeoceanographic and palaeoclimatic reconstruction, and (C) past marine productivity and selective preservation in sediments. It appears that most of the factors influencing OM preservation have been identified, but many of the mechanisms by which they operate are partly, or even fragmentarily, understood. Some factors have not even been taken carefully into consideration. This incomplete understanding of OM breakdown hampers proper assessment of the present and past carbon cycle as well as the interpretation of OM based proxies and proxies affected by OM breakdown. To arrive at better proxy-based reconstructions "deformation functions" are needed, taking into account the transport and diagenesis-related molecular and atomic modifications following proxy formation. Some emerging proxies for OM degradation may shed light on such deformation functions. The use of palynomorph concentrations and selective changes in assemblage composition as models for production and preservation of OM may correct for bias due to selective degradation. Such quantitative assessment of OM degradation may lead to more accurate reconstruction of past productivity and bottom water oxygenation. Given the cost and effort associated with programs to recover sediment cores for paleoclimatological studies, as well as with generating proxy records, it would seem wise to develop a detailed sedimentological and diagenetic context for interpretation of these records. With respect to the latter, parallel acquisition of data that inform on the fidelity of the proxy signatures and reveal potential diagenetic biases would be of clear value.
  • Article
    An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography–mass spectrometry
    (American Geophysical Union, 2009-03-20) Schouten, Stefan ; Hopmans, Ellen C. ; van der Meer, Jaap ; Mets, Anchelique ; Bard, Edouard ; Bianchi, Thomas S. ; Diefendorf, Aaron ; Escala, Marina ; Freeman, Katharine H. ; Furukawa, Yoshihiro ; Huguet, Carme ; Ingalls, Anitra ; Menot, Guillemette ; Nederbragt, Alexandra J. ; Oba, Masahiro ; Pearson, Ann ; Pearson, Emma J. ; Rosell-Mele, Antoni ; Schaeffer, Philippe ; Shah, Sunita R. ; Shanahan, Timothy M. ; Smith, Richard W. ; Smittenberg, Rienk ; Talbot, Helen M. ; Uchida, Masao ; Van Mooy, Benjamin A. S. ; Yamamoto, Masanobu ; Zhang, Zhaohui ; Sinninghe Damste, Jaap S.
    Recently, two new proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) were proposed, i.e., the TEX86 proxy for sea surface temperature reconstructions and the BIT index for reconstructing soil organic matter input to the ocean. In this study, fifteen laboratories participated in a round robin study of two sediment extracts with a range of TEX86 and BIT values to test the analytical reproducibility and repeatability in analyzing these proxies. For TEX86 the repeatability, indicating intra-laboratory variation, was 0.028 and 0.017 for the two sediment extracts or ±1–2°C when translated to temperature. The reproducibility, indicating among-laboratory variation, of TEX86 measurements was substantially higher, i.e., 0.050 and 0.067 or ±3–4°C when translated to temperature. The latter values are higher than those obtained in round robin studies of Mg/Ca and U37 k′ paleothermometers, suggesting the need to primarily improve compatibility between labs. The repeatability of BIT measurements for the sediment with substantial amounts of soil organic matter input was relatively small, 0.029, but reproducibility was large, 0.410. This large variance could not be attributed to specific equipment used or a particular data treatment. We suggest that this may be caused by the large difference in the molecular weight in the GDGTs used in the BIT index, i.e., crenarchaeol versus the branched GDGTs. Potentially, this difference gives rise to variable responses in the different mass spectrometers used. Calibration using authentic standards is needed to establish compatibility between labs performing BIT measurements.
  • Article
    An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures
    (John Wiley & Sons, 2013-12-20) Schouten, Stefan ; Hopmans, Ellen C. ; Rosell-Mele, Antoni ; Pearson, Ann ; Adam, Pierre ; Bauersachs, Thorsten ; Bard, Edouard ; Bernasconi, Stefano M. ; Bianchi, Thomas S. ; Brocks, Jochen J. ; Carlson, Laura Truxal ; Castaneda, Isla S. ; Derenne, Sylvie ; Selver, Ayca Dogrul ; Dutta, Koushik ; Eglinton, Timothy I. ; Fosse, Celine ; Galy, Valier ; Grice, Kliti ; Hinrichs, Kai-Uwe ; Huang, Yongsong ; Huguet, Arnaud ; Huguet, Carme ; Hurley, Sarah ; Ingalls, Anitra ; Jia, Guodong ; Keely, Brendan ; Knappy, Chris ; Kondo, Miyuki ; Krishnan, Srinath ; Lincoln, Sara ; Lipp, Julius S. ; Mangelsdorf, Kai ; Martínez-Garcia, Alfredo ; Menot, Guillemette ; Mets, Anchelique ; Mollenhauer, Gesine ; Ohkouchi, Naohiko ; Ossebaar, Jort ; Pagani, Mark ; Pancost, Richard D. ; Pearson, Emma J. ; Peterse, Francien ; Reichart, Gert-Jan ; Schaeffer, Philippe ; Schmitt, Gaby ; Schwark, Lorenz ; Shah, Sunita R. ; Smith, Richard W. ; Smittenberg, Rienk H. ; Summons, Roger E. ; Takano, Yoshinori ; Talbot, Helen M. ; Taylor, Kyle W. R. ; Tarozo, Rafael ; Uchida, Masao ; van Dongen, Bart E. ; Van Mooy, Benjamin A. S. ; Wang, Jinxiang ; Warren, Courtney ; Weijers, Johan W. H. ; Werne, Josef P. ; Woltering, Martijn ; Xie, Shucheng ; Yamamoto, Masanobu ; Yang, Huan ; Zhang, Chuanlun L. ; Zhang, Yige ; Zhao, Meixun ; Sinninghe Damste, Jaap S.
    Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3–4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0–1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the “true” (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.