Grandy A. Stuart

No Thumbnail Available
Last Name
Grandy
First Name
A. Stuart
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
    ( 2017-03) Melillo, Jerry M. ; Frey, Serita D. ; DeAngelis, Kristen M. ; Werner, William J. ; Bernard, Michael J. ; Bowles, F. P. ; Pold, Grace ; Grandy, A. Stuart
    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.
  • Article
    Fungal community response to long-term soil warming with potential implications for soil carbon dynamics
    (Ecological Society of America, 2021-05-11) Pec, Gregory J. ; van Diepen, Linda T. A. ; Knorr, Melissa ; Grandy, A. Stuart ; Melillo, Jerry M. ; DeAngelis, Kristen M. ; Blanchard, Jeffrey L. ; Frey, Serita D.
    The direction and magnitude of climate warming effects on ecosystem processes such as carbon cycling remain uncertain. Soil fungi are central to these processes due to their roles as decomposers of soil organic matter, as mycorrhizal symbionts, and as determinants of plant diversity. Yet despite their importance to ecosystem functioning, we lack a clear understanding of the long-term response of soil fungal communities to warming. Toward this goal, we characterized soil fungal communities in two replicated soil warming experiments at the Harvard Forest (Petersham, Massachusetts, USA) which had experienced 5°C above ambient soil temperatures for 5 and 20 yr at the time of sampling. We assessed fungal diversity and community composition by sequencing the ITS2 region of rDNA using Illumina technology, along with soil C concentrations and chemistry. Three main findings emerged: (1) long-, but not short-term warming resulted in compositional shifts in the soil fungal community, particularly in the saprotrophic and unknown components of the community; (2) soil C concentrations and the total C stored in the organic horizon declined in response to both short- (5 yr) and long-term (20 yr) warming; and (3) following long-term warming, shifts in fungal guild relative abundances were associated with substantial changes in soil organic matter chemistry, particularly the relative abundance of lignin. Taken together, our results suggest that shifts with warming in the relative abundance of fungal functional groups and dominant fungal taxa are related to observed losses in total soil C.
  • Article
    Changes in substrate availability drive carbon cycle response to chronic warming
    (Elsevier, 2017-03-22) Pold, Grace ; Grandy, A. Stuart ; Melillo, Jerry M. ; DeAngelis, Kristen M.
    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significant reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.