Steudler Paul A.

No Thumbnail Available
Last Name
Steudler
First Name
Paul A.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Article
    Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century : a retrospective analysis with a process-based biogeochemistry model
    (American Geophysical Union, 2008-08-18) Zhuang, Qianlai ; Melillo, Jerry M. ; Kicklighter, David W. ; Prinn, Ronald G. ; McGuire, A. David ; Steudler, Paul A. ; Felzer, Benjamin S. ; Hu, Shaomin
    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr−1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr−1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH4 concentrations to provide a major positive feedback to the climate system.
  • Article
    Soil warming alters nitrogen cycling in a New England forest : implications for ecosystem function and structure
    (Springer, 2011-10-05) Butler, Sarah M. ; Melillo, Jerry M. ; Johnson, J. E. ; Mohan, Jacqueline E. ; Steudler, Paul A. ; Lux, H. ; Burrows, E. ; Smith, R. M. ; Vario, C. L. ; Scott, Lindsay ; Hill, T. D. ; Aponte, N. ; Bowl, F.
    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.
  • Article
    Net emissions of CH4 and CO2 in Alaska : implications for the region's greenhouse gas budget
    (Ecological Society of America, 2007-01) Zhuang, Qianlai ; Melillo, Jerry M. ; McGuire, A. David ; Kicklighter, David W. ; Prinn, Ronald G. ; Steudler, Paul A. ; Felzer, Benjamin S. ; Hu, Shaomin
    We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are 3 Tg CH4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. When we placed these CH4 emissions in the context of the projected carbon budget (carbon dioxide [CO2] and CH4) for Alaska at the end of the 21st century, we estimated that Alaska will be a net source of greenhouse gases to the atmosphere of 69 Tg CO2 equivalents/yr, that is, a balance between net methane emissions of 131 Tg CO2 equivalents/yr and carbon sequestration of 17 Tg C/yr (62 Tg CO2 equivalents/yr).
  • Article
    CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century
    (American Geophysical Union, 2006-09-15) Zhuang, Qianlai ; Melillo, Jerry M. ; Sarofim, Marcus C. ; Kicklighter, David W. ; McGuire, A. David ; Felzer, Benjamin S. ; Sokolov, Andrei P. ; Prinn, Ronald G. ; Steudler, Paul A. ; Hu, Shaomin
    Terrestrial ecosystems of the northern high latitudes (above 50oN) exchange large amounts of CO2 and CH4 with the atmosphere each year. Here we use a process-based model to estimate the budget of CO2 and CH4 of the region for current climate conditions and for future scenarios by considering effects of permafrost dynamics, CO2 fertilization of photosynthesis and fire. We find that currently the region is a net source of carbon to the atmosphere at 276 Tg C yr-1. We project that throughout the 21st century, the region will most likely continue as a net source of carbon and the source will increase by up to 473 Tg C yr-1 by the end of the century compared to the current emissions. However our coupled carbon and climate model simulations show that these emissions will exert relatively small radiative forcing on global climate system compared to large amounts of anthropogenic emissions.
  • Article
    The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments
    (Public Library of Science, 2013-02-22) Lau, Evan ; Fisher, Meredith C. ; Steudler, Paul A. ; Cavanaugh, Colleen M.
    The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.
  • Article
    Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria
    (American Society for Microbiology, 2001-10) Gulledge, Jay ; Ahmad, Azeem ; Steudler, Paul A. ; Pomerantz, William J. ; Cavanaugh, Colleen M.
    Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57°C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.