Wang Hongjie

No Thumbnail Available
Last Name
Wang
First Name
Hongjie
ORCID
0000-0003-0640-4383

Search Results

Now showing 1 - 2 of 2
  • Article
    Time of Emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design.
    (Frontiers Media, 2019-03-08) Turk, Daniela ; Wang, Hongjie ; Hu, Xinping ; Gledhill, Dwight K. ; Wang, Zhaohui Aleck ; Jiang, Liqing ; Cai, Wei-Jun
    Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
  • Article
    Summer surface CO2 dynamics on the Bering Sea and eastern Chukchi Sea shelves from 1989 to 2019
    (American Geophysical Union, 2021-12-17) Wang, Hongjie ; Lin, Peigen ; Pickart, Robert S. ; Cross, Jessica N.
    By compiling boreal summer (June to October) CO2 measurements from 1989 to 2019 on the Bering and eastern Chukchi Sea shelves, we find that the study areas act as a CO2 sink except when impacted by river runoff and wind-driven upwelling. The CO2 system in this area is seasonally dominated by the biological pump especially in the northern Bering Sea and near Hanna Shoal, while wind-driven upwelling of CO2-rich bottom water can cause episodic outgassing. Seasonal surface ΔfCO2 (oceanic fCO2 – air fCO2) is dominantly driven by temperature only during periods of weak CO2 outgassing in shallow nearshore areas. However, after comparing the mean summer ΔfCO2 during the periods of 1989–2013 and 2014–2019, we suggest that temperature does drive long-term, multi-decadal patterns in ΔfCO2. In the northern Chukchi Sea, rapid warming concurrent with reduced seasonal sea-ice persistence caused the regional summer CO2 sink to decrease. By contrast, increasing primary productivity caused the regional summer CO2 sink on the Bering Sea shelf to increase over time. While additional time series are needed to confirm the seasonal and annual trajectory of CO2 changes and ocean acidification in these dynamic and spatially complex ecosystems, this study provides a meaningful mechanistic analysis of recent changes in inorganic carbonate chemistry. As high-resolution time series of inorganic carbonate parameters lengthen and short-term variations are better constrained in the coming decades, we will have stronger confidence in assessing the mechanisms contributing to long-term changes in the source/sink status of regional sub-Arctic seas.