Fiedler
Björn
Fiedler
Björn
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleOcean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications(Frontiers Media, 2019-07-12) Benway, Heather M. ; Lorenzoni, Laura ; White, Angelicque E. ; Fiedler, Björn ; Levine, Naomi M. ; Nicholson, David P. ; DeGrandpre, Michael D. ; Sosik, Heidi M. ; Church, Matthew J. ; O'Brien, Todd D. ; Leinen, Margaret S. ; Weller, Robert A. ; Karl, David M. ; Henson, Stephanie A. ; Letelier, Ricardo M.Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.
-
ArticleSynthesis Product for Ocean Time Series (SPOTS)—A ship-based biogeochemical pilot(Copernicus Publications, 2024-04-16) Lange, Nico ; Fiedler, Bjorn ; Alvarez, Marta ; Benoit-Cattin, Alice ; Benway, Heather M. ; Buttigieg, Pier Luigi ; Coppola, Laurent ; Currie, Kim ; Flecha, Susana ; Gerlach, Dana S. ; Honda, Makio ; Huertas, I. Emma ; Lauvset, Siv K. ; Muller-Karger, Frank ; Kortzinger, Arne ; O'Brien, Kevin M. ; Olafsdottir, Solveig R. ; Pacheco, Fernando C. ; Rueda-Roa, Digna ; Skjelvan, Ingunn ; Wakita, Masahide ; White, Angelicque E. ; Tanhua, TosteThe presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal resolutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmonized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time-series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division's Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product).