Nguyen Tran B.

No Thumbnail Available
Last Name
Nguyen
First Name
Tran B.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Challenges and future directions for data management in the geosciences
    (American Meteorological Society, 2019-06-04) Schuster, Douglas C. ; Mayernik, Matthew ; Hou, Chung-Yi ; Stossmeister, Greg ; Downs, Robert R. ; Kinkade, Danie ; Nguyen, Tran B. ; Ramamurthy, Mohan ; Zhang, Fuqing
    The open availability and wide accessibility of digital scientific resources, such as articles and datasets, is becoming the norm for twenty-first-century science. Geoscience researchers are now being asked by funding agencies and scientific publishers to archive and cite data to support open access but often struggle to understand, interpret, and fulfill these requirements. To fulfill the promise of new open data initiatives, 1) scientific resources (e.g., data and software) must be collected and documented properly; 2) repository services, including preservation and storage capabilities, must be maintained, supported, and improved over time; and 3) governance institutions must be established. These issues were discussed in the Geoscience Digital Data Resource and Repository Service (GeoDaRRS) workshop,1 held in August 2018, at NCAR. The workshop brought together more than 60 geoscience researchers, technology experts, scientific publishers, funders, and data repository personnel to discuss data management challenges and opportunities within the geosciences. This included exploring whether new services are needed to complement existing data facilities, particularly in the areas of 1) data management planning support resources and 2) repository services for geoscience researchers who have data that do not fit in any existing repository. More details on the workshop agenda and recommendations are available in the final workshop report (Mayernik et al. 2018).
  • Article
    Refractory dissolved organic matter has similar chemical characteristics but different radiocarbon signatures with depth in the marine water column
    (American Geophysical Union, 2023-04-04) White, Margot E. ; Nguyen, Tran B. ; Koester, Irina ; Lardie Gaylord, Mary C. ; Beman, J. Michael ; Smith, Kenneth L. ; McNichol, Ann P. ; Beaupré, Steven R. ; Aluwihare, Lihini I.
    The >5,000‐year radiocarbon age (14C‐age) of much of the 630 ± 30 Pg C oceanic dissolved organic carbon (DOC) reservoir remains an enigma in the marine carbon cycle. The fact that DOC is significantly older than dissolved inorganic carbon at every depth in the ocean forms the basis of our current framing of the marine DOC cycle, where some component persists over multiple cycles of ocean mixing. As a result, 14C‐depleted, aged DOC is hypothesized to be present as a uniform reservoir with a constant 14C signature and concentration throughout the water column. However, key requirements of this model, including direct observations of DOC with similar 14C signatures in the surface and deep ocean, have never been met. Despite decades of research, the distribution of Δ14C values in marine DOC remains a mystery. Here, we applied a thermal fractionation method to compare operationally defined refractory DOC (RDOC) from different depths in the North Pacific Ocean. We found that RDOC shares chemical characteristics (as recorded by OC bond strength) throughout the water column but does not share the same 14C signature. Our results support one part of the current paradigm—that RDOC is comprised of structurally related components throughout the ocean that form a “background” reservoir. However, in contrast to the current paradigm, our results are consistent with a vertical concentration gradient and a vertical and inter‐ocean Δ14C gradient for RDOC. The observed Δ14C gradient is compatible with the potential addition of pre‐aged DOC to the upper ocean.