Jevrejeva Svetlana

No Thumbnail Available
Last Name
Jevrejeva
First Name
Svetlana
ORCID
0000-0001-9490-4665

Search Results

Now showing 1 - 3 of 3
  • Book chapter
    Global Oceans [in “State of the Climate in 2020”]
    (American Meteorological Society, 2021-08-01) Johnson, Gregory C. ; Lumpkin, Rick ; Alin, Simone R. ; Amaya, Dillon J. ; Baringer, Molly O. ; Boyer, Tim ; Brandt, Peter ; Carter, Brendan ; Cetinić, Ivona ; Chambers, Don P. ; Cheng, Lijing ; Collins, Andrew U. ; Cosca, Cathy ; Domingues, Ricardo ; Dong, Shenfu ; Feely, Richard A. ; Frajka-Williams, Eleanor E. ; Franz, Bryan A. ; Gilson, John ; Goni, Gustavo J. ; Hamlington, Benjamin D. ; Herrford, Josefine ; Hu, Zeng-Zhen ; Huang, Boyin ; Ishii, Masayoshi ; Jevrejeva, Svetlana ; Kennedy, John J. ; Kersalé, Marion ; Killick, Rachel E. ; Landschützer, Peter ; Lankhorst, Matthias ; Leuliette, Eric ; Locarnini, Ricardo ; Lyman, John ; Marra, John F. ; Meinen, Christopher S. ; Merrifield, Mark ; Mitchum, Gary ; Moat, Bengamin I. ; Nerem, R. Steven ; Perez, Renellys ; Purkey, Sarah G. ; Reagan, James ; Sanchez-Franks, Alejandra ; Scannell, Hillary A. ; Schmid, Claudia ; Scott, Joel P. ; Siegel, David A. ; Smeed, David A. ; Stackhouse, Paul W. ; Sweet, William V. ; Thompson, Philip R. ; Trinanes, Joaquin ; Volkov, Denis L. ; Wanninkhof, Rik ; Weller, Robert A. ; Wen, Caihong ; Westberry, Toby K. ; Widlansky, Matthew J. ; Wilber, Anne C. ; Yu, Lisan ; Zhang, Huai-Min
    This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
  • Article
    Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level
    (Frontiers Media, 2019-07-25) Ponte, Rui M. ; Carson, Mark ; Cirano, Mauro ; Domingues, Catia M. ; Jevrejeva, Svetlana ; Marcos, Marta ; Mitchum, Gary ; van de Wal, Roderik S.W. ; Woodworth, Philip L. ; Ablain, Michaël ; Ardhuin, Fabrice ; Ballu, Valerie ; Becker, Mélanie ; Benveniste, Jérôme ; Birol, Florence ; Bradshaw, Elizabeth ; Cazenave, Anny ; De Mey-Frémaux, Pierre ; Durand, Fabien ; Ezer, Tal ; Fu, Lee-Lueng ; Fukumori, Ichiro ; Gordon, Kathy ; Gravelle, Médéric ; Griffies, Stephen M. ; Han, Weiqing ; Hibbert, Angela ; Hughes, Chris W. ; Idier, Deborah ; Kourafalou, Vassiliki H. ; Little, Christopher M. ; Matthews, Andrew ; Melet, Angelique ; Merrifield, Mark ; Meyssignac, Benoit ; Minobe, Shoshiro ; Penduff, Thierry ; Picot, Nicolas ; Piecuch, Christopher G. ; Ray, Richard D. ; Rickards, Lesley ; Santamaría-Gómez, Alvaro ; Stammer, Detlef ; Staneva, Joanna ; Testut, Laurent ; Thompson, Keith ; Thompson, Philip ; Vignudelli, Stefano ; Williams, Joanne ; Williams, Simon D. P. ; Wöppelmann, Guy ; Zanna, Laure ; Zhang, Xuebin
    A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
  • Article
    Using shelf‐edge transport composition and sensitivity experiments to understand processes driving sea level on the Northwest European Shelf
    (American Geophysical Union, 2024-05-09) Wise, Anthony ; Calafat, Francisco M. ; Hughes, Chris W. ; Jevrejeva, Svetlana ; Katsman, Caroline A. ; Oelsmann, Julius ; Piecuch, Christopher G. ; Polton, Jeff ; Richter, Kristin
    Variability in ocean currents, temperature and salinity drive dynamic sea level (DSL) variability on the Northwest European Shelf (NWES). It is dominated by mass variations, with steric signals relatively small. A mechanistic explanation of how ocean dynamics relates to the mass component of NWES sea level variability is required. We use regional ocean model experiments to isolate sources of variability and then investigate the effect on monthly to-interannual DSL variability together with the simulated momentum budgets along the shelfbreak. Regional (local) wind and non-regional (remote) forcing are important on the NWES. For the local wind forcing, the net mass flux onto the shelf, which drives a shelf-mean mode of DSL variability, results from a combination of surface Ekman, bottom Ekman and geostrophic flows and explains 73% of the variance in transport across the shelf-edge. The geostrophic flow is closely related to wind stress with a flow about half that of surface Ekman transport but in the opposite direction. For the remotely forced mass-flux across the shelf-edge, the geostrophic component explains 62% of the variance and bottom friction plays an important indirect role. The remotely forced variability, while relatively spatially uniform, is more important for explaining DSL variance over the western NWES. This mode of variability is sensitive to signals propagating northward via a thin strip of the southern boundary near the Portuguese coast, consistent with coastal trapped wave signals. It also appears to drive steric height in the Bay of Biscay, which is related to DSL on the shelf.