Fox Sophia E.

No Thumbnail Available
Last Name
First Name
Sophia E.

Search Results

Now showing 1 - 7 of 7
  • Article
    Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae)
    (John Wiley & Sons, 2015-09-18) Brosnahan, Michael L. ; Velo-Suarez, Lourdes ; Ralston, David K. ; Fox, Sophia E. ; Sehein, Taylor R. ; Shalapyonok, Alexi ; Sosik, Heidi M. ; Olson, Robert J. ; Anderson, Donald M.
    Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine-based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy-based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture.
  • Preprint
    Macrophyte abundance in Waquoit Bay : effects of land-derived nitrogen loads on seasonal and multi-year biomass patterns
    ( 2008-01) Fox, Sophia E. ; Stieve, Erica ; Valiela, Ivan ; Hauxwell, Jennifer ; McClelland, James W.
    Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems. To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for six years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha-1 y-1. Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries, but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the six years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.
  • Article
    Macroalgal responses to experimental nutrient enrichment in shallow coastal waters : growth, internal nutrient pools, and isotopic signatures
    (Inter-Research, 2008-09-25) Teichberg, Mirta ; Fox, Sophia E. ; Aguila, Carolina ; Olsen, Ylva S. ; Valiela, Ivan
    Increased nutrient inputs to temperate coastal waters have led to increased occurrences of macroalgal blooms worldwide. To identify nutrients that are limiting to macroalgae and to determine whether different forms of these nutrients and long-term ambient nutrient conditions affect macroalgal response, we used in situ enrichment methods and tested the response of 2 bloom-forming species of macroalgae, Ulva lactuca and Gracilaria tikvahiae, from shallow estuaries of Waquoit Bay, Massachusetts, USA, that receive different land-derived N inputs. We enriched caged macroalgal fronds with nitrate, ammonium, phosphate, and N + P combinations, and measured growth, nutrient content, and δ15N signatures of fronds after 2 wk of incubation. In these estuaries, P did not limit growth, however, the 2 species differed in growth response to N additions. Growth of U. lactuca was greater in Childs River (CR), the estuary with higher nitrate inputs, than in Sage Lot Pond (SLP); growth in SLP increased with nitrate and ammonium enrichment. In contrast, growth of G. tikvahiae was greater in SLP than in CR, but had no growth response to N enrichment in either site. C and N contents differed initially between species and sites, and after nutrient enrichment. Final tissue % N increased and C:N decreased after nitrate and ammonium enrichment. δ15N values of the macroalgae demonstrated uptake of the experimental fertilizers, and a higher affinity and faster turnover of internal N pools with ammonium than nitrate enrichment in both species. We suggest that U. lactuca blooms in areas with both high nitrate and ammonium water column concentrations, and is more N-limited in oligotrophic waters where DIN levels are too low to sustain high growth rates. G. tikvahiae has a greater N storage capacity than U. lactuca, which may allow it to grow in less nutrient-rich waters.
  • Article
    Nutrient gradients in Panamanian estuaries : effects of watershed deforestation, rainfall, upwelling, and within-estuary transformations
    (Inter-Research, 2013-05-22) Valiela, Ivan ; Giblin, Anne E. ; Barth-Jensen, Coralie ; Harris, Carolynn ; Stone, Thomas A. ; Fox, Sophia E. ; Crusius, John
    To test whether deforestation of tropical forests alters coupling of watersheds, estuaries, and coastal waters, we measured nutrients in 8 watershed-estuarine systems on the Pacific coast of Panama where watershed forest cover ranged from 23 to 92%. Watersheds with greater forest cover discharged larger dissolved inorganic nitrogen concentrations and higher N/P into estuary headwaters. As freshwater mixed with seawater down-estuary, within-estuary biogeochemical processes erased the imprint of watershed deforestation, increased ammonium, lowered nitrate concentrations, and otherwise altered down-estuary water column composition. As estuarine water left mangrove estuaries, ammonium, nitrate, and phosphate, but not dissolved organic nitrogen, were exported to receiving near-shore waters. Mangrove estuaries in this region thus provide important ecological services, by uncoupling coastal waters from changes in terrestrial land covers, as well as by subsidizing adjoined receiving coastal waters by providing nutrients. The pattern of land-sea coupling and exports was disrupted during La Niña-influenced conditions. In one instance when La Niña conditions led to upwelling of deeper layers, high concentrations of marine-derived ammonium were inserted into estuaries. In another instance, La Niña-associated high rainfall diluted nutrient concentrations within estuaries and lowered salinity regionally, and the fresher upper layer impaired coastal upwelling. Regional rainfall has increased during the last decade. If La Niña rainfall continues to increase, disruptions of current land-estuary-sea couplings may become more frequent, with potentially significant changes in nutrient cycles and ecological services in these coupled ecosystems.
  • Preprint
    Temperature and residence time controls on an estuarine harmful algal bloom : modeling hydrodynamics and Alexandrium fundyense in Nauset estuary
    ( 2015-01) Ralston, David K. ; Brosnahan, Michael L. ; Fox, Sophia E. ; Lee, Krista D. ; Anderson, Donald M.
    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated model allows a quantitative assessment of the factors that contribute to the development of a recurrent harmful algal bloom and provides a framework for assessing similarly impacted coastal systems.
  • Article
    Deforestation of watersheds of Panama : nutrient retention and export to streams
    (Springer, 2013-03-19) Valiela, Ivan ; Barth-Jensen, Coralie ; Stone, Thomas A. ; Crusius, John ; Fox, Sophia E. ; Bartholomew, Megan
    A series of eight watersheds on the Pacific coast of Panama where conversion of mature lowland wet forest to pastures by artisanal burning provided watershed-scale experimental units with a wide range of forest cover (23, 29, 47, 56, 66, 73, 73, 91, and 92%). We used these watersheds as a landscape-scale experiment to assess effects of degree of deforestation on within-watershed retention and hydrological export of atmospheric inputs of nutrients. Retention was estimated by comparing rainfall nutrient concentrations (volume-weighted to allow for evapotranspiration) to concentrations in freshwater reaches of receiving streams. Retention of rain-derived nutrients in these Panama watersheds averaged 77, 85, 80, and 62% for nitrate, ammonium, dissolved organic N, and phosphate, respectively. Retention of rain-derived inorganic nitrogen, however, depended on watershed cover: retention of nitrate and ammonium in pasture-dominated watersheds was 95 and 98%, while fully forested watersheds retained 65 and 80% of atmospheric nitrate and ammonium inputs. Watershed forest cover did not affect retention of dissolved organic nitrogen and phosphate. Exports from more forested watersheds yielded DIN/P near 16, while pasture-dominated watersheds exported N/P near 2. The differences in magnitude of exports and ratios suggest that deforestation in these Panamanian forests results in exports that affect growth of plants and algae in the receiving stream and estuarine ecosystems. Watershed retention of dissolved inorganic nitrogen calculated from wet plus dry atmospheric deposition varied from 90% in pasture- to 65% in forest-dominated watersheds, respectively. Discharges of DIN to receiving waters from the watersheds therefore rose from 10% of atmospheric inputs for pasture-dominated watersheds, to about 35% of atmospheric inputs for fully forested watersheds. These results from watersheds with no agriculture or urbanization, but different conversion of forest to pasture by burning, show significant, deforestation-dependent retention within tropical watersheds, but also ecologically significant, and deforestation-dependent, exports that are biologically significant because of the paucity of nutrients in receiving tropical stream and coastal waters.
  • Article
    Biogeographical patterns of tunicates utilizing eelgrass as substrate in the western North Atlantic between 39 degrees and 47 degrees north latitude (New Jersey to Newfoundland)
    (Regional Euro-Asian Biological Invasions Centre, 2019-10-30) Carman, Mary R. ; Colarusso, Philip D. ; Neckles, Hilary A. ; Bologna, Paul ; Caines, Scott ; Davidson, John D.P. ; Evans, N. Tay ; Fox, Sophia E. ; Grunden, David W. ; Hoffman, Sarah ; Ma, Kevin C.K. ; Matheson, Kyle ; McKenzie, Cynthia H. ; Nelson, Eric P. ; Plaisted, Holly ; Reddington, Emily ; Schott, Stephen ; Wong, Melisa C.
    Colonization of eelgrass (Zostera marina L.) by tunicates can lead to reduced plant growth and survival. Several of the tunicate species that are found on eelgrass in the northwest Atlantic are highly aggressive colonizers, and range expansions are predicted in association with climate-change induced increases in seawater temperature. In 2017, we surveyed tunicates within eelgrass meadows at 33 sites from New Jersey to Newfoundland. Eight tunicate species were identified colonizing eelgrass, of which four were non-native and one was cryptogenic. The most common species (Botrylloides violaceus and Botryllus schlosseri) occurred from New York to Atlantic Canada. Tunicate faunas attached to eelgrass were less diverse north of Cape Cod, Massachusetts. Artificial substrates in the vicinity of the eelgrass meadows generally supported more tunicate species than did the eelgrass, but fewer species co-occurred in northern sites than southern sites. The latitudinal gradient in tunicate diversity corresponded to gradients of summertime sea surface temperature and traditional biogeographical zones in the northwest Atlantic, where Cape Cod represents a transition between cold-water and warm-water invertebrate faunas. Tunicate density in the eelgrass meadows was low, ranging generally from 1–25% cover of eelgrass shoots, suggesting that space availability does not currently limit tunicate colonization of eelgrass. This survey, along with our 2013 survey, provide a baseline for identifying future changes in tunicate distribution and abundance in northwest Atlantic eelgrass meadows.