Jenkins
Alastair D.
Jenkins
Alastair D.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
PreprintReply to: Comment on the paper: A simple model for the short-time evolution of near-surface current and temperature profiles( 2005-12-12) Jenkins, Alastair D. ; Ward, BrianThis is our response to a comment by Walter Eifler on our paper `A simple model for the short-time evolution of near-surface current and temperature profiles' (arXiv:physics/0503186, accepted for publication in Deep-Sea Research II ). Although Eifler raises genuine issues regarding our model's validity and applicability, we are nevertheless of the opinion that it is of value for the short-term evolution of the upper-ocean profiles of current and temperature. The fact that the effective eddy viscosity tends to infinity for infinite time under a steady wind stress may not be surprising. It can be interpreted as a vertical shift of the eddy viscosity profile and an increase in the size of the dominant turbulent eddies under the assumed conditions of small stratification and infinite water depth.
-
PreprintA simple model for the short-time evolution of near-surface current and temperature profiles( 2004-12-21) Jenkins, Alastair D. ; Ward, BrianA simple analytical/numerical model has been developed for computing the evolution, over periods of up to a few hours, of the current and temperature profile in the upper layer of the ocean. The model is based upon conservation laws for heat and momentum, and employs an eddy diffusion parameterisation which is dependent on both the wind speed and the wind stress applied at the sea surface. Other parameters such as the bulk-skin surface temperature difference and CO2 flux are determined by application of the Molecular Oceanic Boundary Layer Model (MOBLAM) of Schlussel and Soloviev. A similar model, for the current profile only, predicts a temporary increase in wave breaking intensity and decrease in wave height under conditions where the wind speed increases suddenly, such as, for example, during gusts and squalls. The model results are compared with measurements from the lagrangian Skin Depth Experimental Profiler (SkinDeEP) surface profiling instrument made during the 1999 MOCE-5 field experiment in the waters around Baja California. SkinDeEP made repeated profiles of temperature within the upper few metres of the water column. Given that no tuning was performed in the model, and that the model does not take account of stratification, the results of the model runs are in rather good agreement with the observations. The model may be suitable as an interface between time-independent models of processes very near the surface, and larger-scale three-dimensional time-dependent ocean circulation models. A straightforward extension of the model should also be suitable for making time-dependent computations of gas concentration in the near-surface layer of the ocean.