Abualnaja
Yasser
Abualnaja
Yasser
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleProcess modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea(John Wiley & Sons, 2014-02-25) Chen, Changsheng ; Li, Ruixiang ; Pratt, Lawrence J. ; Limeburner, Richard ; Beardsley, Robert C. ; Bower, Amy S. ; Jiang, Houshuo ; Abualnaja, Yasser ; Xu, Qichun ; Lin, Huichan ; Liu, Xuehai ; Lan, Jian ; Kim, TaewanSurface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.
-
ArticleThe dynamics of weather-band sea level variations in the Red Sea(Elsevier, 2018-09-27) Churchill, James H. ; Abualnaja, Yasser ; Limeburner, Richard ; Nellayaputhenpeedika, MohammedaliThe variations of sea level over the Red Sea may be divided into three broad categories: tidal, seasonal and weather-band. Our study employs a variety of in situ and satellite-derived data in the first comprehensive examination of the Red Sea water level variations in the weather-band (covering periods of 4–30 days). In the central Red Sea, the range of the weather-band sea level signal is of order 0.7 m, which exceeds the tidal and seasonal sea level ranges. From EOF and correlation analysis, we find that a large fraction of the weather-band sea level variation is due to a single mode of motion that extends over the entire Red Sea. In this mode, the water level rises and falls in unison with an amplitude that declines going southward over the southern Red Sea. The temporal signal of this mode is highly correlated with the along-axis surface wind stress over the southern Red Sea, and is closely reproduced by a simple one-dimensional barotropic model with forcing by the along-axis wind stress. Although this model does not account for the full suite of dynamics affecting weather-band sea level variations in the Red Sea, it may serve as a useful predictive tool. Sea level changes associated with the development and movement of sub-mesoscale features (e.g., eddies and boundary currents) are also shown to contribute to weather-band sea level motions in the Red Sea.
-
ArticleTowards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea(American Meteorological Society, 2021-01-01) Hoteit, Ibrahim ; Abualnaja, Yasser ; Afzal, Shehzad ; Ait-El-Fquih, Boujemaa ; Akylas, Triantaphyllos ; Antony, Charls ; Dawson, Clint N. ; Asfahani, Khaled ; Brewin, Robert J. W. ; Cavaleri, Luigi ; Cerovecki, Ivana ; Cornuelle, Bruce D. ; Desamsetti, Srinivas ; Attada, Raju ; Dasari, Hari ; Sanchez-Garrido, Jose ; Genevier, Lily ; El Gharamti, Mohamad ; Gittings, John A. ; Gokul, Elamurugu ; Gopalakrishnan, Ganesh ; Guo, Daquan ; Hadri, Bilel ; Hadwiger, Markus ; Hammoud, Mohammed Abed ; Hendershott, Myrl ; Hittawe, Mohamad ; Karumuri, Ashok ; Knio, Omar ; Kohl, Armin ; Kortas, Samuel ; Krokos, George ; Kunchala, Ravi ; Issa, Leila ; Lakkis, Issam ; Langodan, Sabique ; Lermusiaux, Pierre F. J. ; Luong, Thang ; Ma, Jingyi ; Le Maitre, Olivier ; Mazloff, Matthew R. ; El Mohtar, Samah ; Papadopoulos, Vassilis P. ; Platt, Trevor ; Pratt, Lawrence J. ; Raboudi, Naila ; Racault, Marie-Fanny ; Raitsos, Dionysios E. ; Razak, Shanas ; Sanikommu, Sivareddy ; Sathyendranath, Shubha ; Sofianos, Sarantis S. ; Subramanian, Aneesh C. ; Sun, Rui ; Titi, Edriss ; Toye, Habib ; Triantafyllou, George ; Tsiaras, Kostas ; Vasou, Panagiotis ; Viswanadhapalli, Yesubabu ; Wang, Yixin ; Yao, Fengchao ; Zhan, Peng ; Zodiatis, GeorgeThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.
-
ArticleFactors governing the deep ventilation of the Red Sea(John Wiley & Sons, 2015-11-19) Papadopoulos, Vassilis P. ; Zhan, Peng ; Sofianos, Sarantis S. ; Raitsos, Dionysios E. ; Qurban, Mohammed ; Abualnaja, Yasser ; Bower, Amy S. ; Kontoyiannis, Harilaos ; Pavlidou, Alexandra ; Asharaf, T. T. Mohamed ; Zarokanellos, Nikolaos ; Hoteit, IbrahimA variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.
-
ArticleAtmospheric forcing of the winter air–sea heat fluxes over the northern Red Sea(American Meteorological Society, 2013-03-01) Papadopoulos, Vassilis P. ; Abualnaja, Yasser ; Josey, Simon A. ; Bower, Amy S. ; Raitsos, Dionysios E. ; Kontoyiannis, Harilaos ; Hoteit, IbrahimThe influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.
-
ArticleProperties of Red Sea coastal currents(Elsevier, 2014-02-14) Churchill, James H. ; Lentz, Steven J. ; Farrar, J. Thomas ; Abualnaja, YasserProperties of coastal flows of the central Red Sea are examined using 2 years of velocity data acquired off the coast of Saudi Arabia near 22 °N. The tidal flow is found to be very weak. The strongest tidal constituent, the M2 tide, has a magnitude of order 4 cm s−1. Energetic near-inertial and diurnal period motions are observed. These are surface-intensified currents, reaching magnitudes of >10 cm s−1. Although the diurnal currents appear to be principally wind-driven, their relationship with the surface wind stress record is complex. Less than 50% of the diurnal current variance is related to the diurnal wind stress through linear correlation. Correlation analysis reveals a classical upwelling/downwelling response to the alongshore wind stress. However, less than 30% of the overall sub-inertial variance can be accounted for by this response. The action of basin-scale eddies, impinging on the coastal zone, is implicated as a primary mechanism for driving coastal flows.
-
ArticlePhysical mechanisms routing nutrients in the central Red Sea(John Wiley & Sons, 2017-11-22) Zarokanellos, Nikolaos ; Kürten, Benjamin Peter Helmut Franziskus ; Churchill, James H. ; Roder, Cornelia ; Voolstra, Christian R. ; Abualnaja, Yasser ; Jones, Burton H.Mesoscale eddies and boundary currents play a key role in the upper layer circulation of the Red Sea. This study assesses the physical and biochemical characteristics of an eastern boundary current (EBC) and recurrent eddies in the central Red Sea (CRS) using a combination of in situ and satellite observations. Hydrographic surveys in November 2013 (autumn) and in April 2014 (spring) in the CRS (22.15°N–24.1°N) included a total of 39 and 27 CTD stations, respectively. In addition, high-resolution hydrographic data were acquired in spring 2014 with a towed undulating vehicle (ScanFish). In situ measurements of salinity, temperature, chlorophyll fluorescence, colored dissolved organic matter (CDOM), and dissolved nitrate: phosphorous ratios reveal distinct water mass characteristics for the two periods. An EBC, observed in the upper 150 m of the water column during autumn, transported low-salinity and warm water from the south toward the CRS. Patches of the low-salinity water of southern origin tended to contain relatively high concentrations of chlorophyll and CDOM. The prominent dynamic feature observed in spring was a cyclonic/anticyclonic eddy pair. The cyclonic eddy was responsible for an upward nutrient flux into the euphotic zone. Higher chlorophyll and CDOM concentrations, and concomitant lower nitrate:phosphorous ratios indicate the influence of the EBC in the CRS at the end of the stratified summer period.