Cronin Timothy W.

No Thumbnail Available
Last Name
First Name
Timothy W.

Search Results

Now showing 1 - 7 of 7
  • Article
    Nitrogen effect on carbon-water coupling in forests, grasslands, and shrublands in the arid western United States
    (American Geophysical Union, 2011-08-25) Felzer, Benjamin S. ; Cronin, Timothy W. ; Melillo, Jerry M. ; Kicklighter, David W. ; Schlosser, C. Adam ; Dangal, Shree R. S.
    As greenhouse gases, including CO2, accumulate in the atmosphere, the western United States is predicted to undergo large-scale climate warming and reduced summer precipitation in the coming decades. In this study we explore the role of these climate changes with elevated CO2 to determine the plant physiological response on primary productivity and associated feedbacks on evapotranspiration (ET) and runoff using a biogeochemistry model, TEM-Hydro, with downscaled climate data for the western United States from the NCAR CCSM3 A2 scenario. Net primary productivity increases by 32% in forests due to feedbacks between warmer temperatures and enhanced nitrogen mineralization but decreases in shrublands by 24% due to excessive drying and reduced nitrogen mineralization. Warming directly increases nitrogen mineralization rates but indirectly decreases them by reducing soil moisture, so the net effect is highly dependent on climatic conditions within each biome. Increased soil moisture resulting from larger water use efficiency from the elevated CO2 leads to more net nitrogen mineralization in forests, which reduces N-limiting conditions. The effect of CO2 on stomatal conductance is therefore enhanced because of its effect on reducing nitrogen limiting conditions. Runoff decreases over the 21st century by 22% in forests, 58% in grasslands, and 67% in shrublands due to the reduced precipitation in each region but is modulated by the plant-induced changes in ET. The role of moisture limitation is therefore a crucial regulator of nitrogen limitation, which determines the future productivity and water availability in the West.
  • Article
    Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle
    (American Meteorological Society, 2008-08-01) Sokolov, Andrei P. ; Kicklighter, David W. ; Melillo, Jerry M. ; Felzer, Benjamin S. ; Schlosser, C. Adam ; Cronin, Timothy W.
    The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered. Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration.
  • Article
    Correction to “Importance of carbon-nitrogen interactions and ozone on ecosystem hydrology during the 21st century”
    (American Geophysical Union, 2009-08-22) Felzer, Benjamin S. ; Cronin, Timothy W. ; Melillo, Jerry M. ; Kicklighter, David W. ; Schlosser, C. Adam
  • Article
    Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon
    (Ecological Society of America, 2011-04) Galford, Gillian L. ; Melillo, Jerry M. ; Kicklighter, David W. ; Mustard, John F. ; Cronin, Timothy W. ; Cerri, Carlos E. P. ; Cerri, Carlos C.
    Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO2 to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO2. Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901–2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state's 925 225 km2, 221 092 km2 have been converted to pastures and 89 533 km2 have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil's fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region's carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).
  • Preprint
    Impacts of ozone on trees and crops
    ( 2007-07-05) Felzer, Benjamin S. ; Cronin, Timothy W. ; Reilly, John M. ; Melillo, Jerry M. ; Wang, Xiaodong
    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NOx that are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized croplands are generally not nitrogen-limited, capping ozone-polluting substances in the U.S., Europe, and China can reduce future crop yield loss substantially.
  • Article
    (Copernicus Publications, 2021-08-25) Stevens, Bjorn ; Bony, Sandrine ; Farrell, David ; Ament, Felix ; Blyth, Alan ; Fairall, Christopher W. ; Karstensen, Johannes ; Quinn, Patricia K. ; Speich, Sabrina ; Acquistapace, Claudia ; Aemisegger, Franziska ; Albright, Anna Lea ; Bellenger, Hugo ; Bodenschatz, Eberhard ; Caesar, Kathy-Ann ; Chewitt-Lucas, Rebecca ; de Boer, Gijs ; Delanoë, Julien ; Denby, Leif ; Ewald, Florian ; Fildier, Benjamin ; Forde, Marvin ; George, Geet ; Gross, Silke ; Hagen, Martin ; Hausold, Andrea ; Heywood, Karen J. ; Hirsch, Lutz ; Jacob, Marek ; Jansen, Friedhelm ; Kinne, Stefan ; Klocke, Daniel ; Kölling, Tobias ; Konow, Heike ; Lothon, Marie ; Mohr, Wiebke ; Naumann, Ann Kristin ; Nuijens, Louise ; Olivier, Léa ; Pincus, Robert ; Pöhlker, Mira L. ; Reverdin, Gilles ; Roberts, Gregory ; Schnitt, Sabrina ; Schulz, Hauke ; Siebesma, Pier ; Stephan, Claudia Christine ; Sullivan, Peter P. ; Touzé-Peiffer, Ludovic ; Vial, Jessica ; Vogel, Raphaela ; Zuidema, Paquita ; Alexander, Nicola ; Alves, Lyndon ; Arixi, Sophian ; Asmath, Hamish ; Bagheri, Gholamhossein ; Baier, Katharina ; Bailey, Adriana ; Baranowski, Dariusz ; Baron, Alexandre ; Barrau, Sébastien ; Barrett, Paul A. ; Batier, Frédéric ; Behrendt, Andreas ; Bendinger, Arne ; Beucher, Florent ; Bigorre, Sebastien P. ; Blades, Edmund ; Blossey, Peter ; Bock, Olivier ; Böing, Steven ; Bosser, Pierre ; Bourras, Denis ; Bouruet-Aubertot, Pascale ; Bower, Keith ; Branellec, Pierre ; Branger, Hubert ; Brennek, Michal ; Brewer, Alan ; Brilouet, Pierre-Etienne ; Brügmann, Björn ; Buehler, Stefan A. ; Burke, Elmo ; Burton, Ralph ; Calmer, Radiance ; Canonici, Jean-Christophe ; Carton, Xavier ; Cato, Gregory, Jr. ; Charles, Jude Andre ; Chazette, Patrick ; Chen, Yanxu ; Chilinski, Michal T. ; Choularton, Thomas ; Chuang, Patrick ; Clarke, Shamal ; Coe, Hugh ; Cornet, Céline ; Coutris, Pierre ; Couvreux, Fleur ; Crewell, Susanne ; Cronin, Timothy W. ; Cui, Zhiqiang ; Cuypers, Yannis ; Daley, Alton ; Damerell, Gillian M. ; Dauhut, Thibaut ; Deneke, Hartwig ; Desbios, Jean-Philippe ; Dörner, Steffen ; Donner, Sebastian ; Douet, Vincent ; Drushka, Kyla ; Dütsch, Marina ; Ehrlich, André ; Emanuel, Kerry A. ; Emmanouilidis, Alexandros ; Etienne, Jean-Claude ; Etienne-Leblanc, Sheryl ; Faure, Ghislain ; Feingold, Graham ; Ferrero, Luca ; Fix, Andreas ; Flamant, Cyrille ; Flatau, Piotr Jacek ; Foltz, Gregory R. ; Forster, Linda ; Furtuna, Iulian ; Gadian, Alan ; Galewsky, Joseph ; Gallagher, Martin ; Gallimore, Peter ; Gaston, Cassandra J. ; Gentemann, Chelle L. ; Geyskens, Nicolas ; Giez, Andreas ; Gollop, John ; Gouirand, Isabelle ; Gourbeyre, Christophe ; de Graaf, Dörte ; de Graaf, Geiske E. ; Grosz, Robert ; Güttler, Johannes ; Gutleben, Manuel ; Hall, Kashawn ; Harris, George ; Helfer, Kevin C. ; Henze, Dean ; Herbert, Calvert ; Holanda, Bruna ; Ibanez-Landeta, Antonio ; Intrieri, Janet ; Iyer, Suneil ; Julien, Fabrice ; Kalesse, Heike ; Kazil, Jan ; Kellman, Alexander ; Kidane, Abiel T. ; Kirchner, Ulrike ; Klingebiel, Marcus ; Körner, Mareike ; Kremper, Leslie Ann ; Kretzschmar, Jan ; Krüger, Ovid O. ; Kumala, Wojciech ; Kurz, Armin ; L'Hégareta, Pierre ; Labaste, Matthieu ; Lachlan-Cope, Thomas ; Laing, Arlene ; Landschützer, Peter ; Lang, Theresa ; Lange, Diego ; Lange, Ingo ; Laplace, Clément ; Lavik, Gauke ; Laxenaire, Rémi ; Le Bihan, Caroline ; Leandro, Mason ; Lefevre, Nathalie ; Lena, Marius ; Lenschow, Donald ; Li, Qiang ; Lloyd, Gary ; Los, Sebastian ; Losi, Niccolò ; Lovell, Oscar ; Luneau, Christopher ; Makuch, Przemyslaw ; Malinowski, Szymon ; Manta, Gaston ; Marinou, Eleni ; Marsden, Nicholas ; Masson, Sebastien ; Maury, Nicolas ; Mayer, Bernhard ; Mayers-Als, Margarette ; Mazel, Christophe ; McGeary, Wayne ; McWilliams, James C. ; Mech, Mario ; Mehlmann, Melina ; Meroni, Agostino Niyonkuru ; Mieslinger, Theresa ; Minikin, Andreas ; Minnett, Peter J. ; Möller, Gregor ; Morfa Avalos, Yanmichel ; Muller, Caroline ; Musat, Ionela ; Napoli, Anna ; Neuberger, Almuth ; Noisel, Christophe ; Noone, David ; Nordsiek, Freja ; Nowak, Jakub L. ; Oswald, Lothar ; Parker, Douglas J. ; Peck, Carolyn ; Person, Renaud ; Philippi, Miriam ; Plueddemann, Albert J. ; Pöhlker, Christopher ; Pörtge, Veronika ; Pöschl, Ulrich ; Pologne, Lawrence ; Posyniak, Michał ; Prange, Marc ; Quinones Melendez, Estefania ; Radtke, Jule ; Ramage, Karim ; Reimann, Jens ; Renault, Lionel ; Reus, Klaus ; Reyes, Ashford ; Ribbe, Joachim ; Ringel, Maximilian ; Ritschel, Markus ; Rocha, Cesar B. ; Rochetin, Nicolas ; Röttenbacher, Johannes ; Rollo, Callum ; Royer, Haley M. ; Sadoulet, Pauline ; Saffin, Leo ; Sandiford, Sanola ; Sandu, Irina ; Schäfer, Michael ; Schemann, Vera ; Schirmacher, Imke ; Schlenczek, Oliver ; Schmidt, Jerome M. ; Schröder, Marcel ; Schwarzenboeck, Alfons ; Sealy, Andrea ; Senff, Christoph J. ; Serikov, Ilya ; Shohan, Samkeyat ; Siddle, Elizabeth ; Smirnov, Alexander ; Späth, Florian ; Spooner, Branden ; Stolla, M. Katharina ; Szkółka, Wojciech ; de Szoeke, Simon P. ; Tarot, Stéphane ; Tetoni, Eleni ; Thompson, Elizabeth ; Thomson, Jim ; Tomassini, Lorenzo ; Totems, Julien ; Ubele, Alma Anna ; Villiger, Leonie ; von Arx, Jan ; Wagner, Thomas ; Walther, Andi ; Webber, Ben ; Wendisch, Manfred ; Whitehall, Shanice ; Wiltshire, Anton ; Wing, Allison A. ; Wirth, Martin ; Wiskandt, Jonathan ; Wolf, Kevin ; Worbes, Ludwig ; Wright, Ethan ; Young, Shanea ; Zhang, Chidong ; Zhang, Dongxiao ; Ziemen, Florian ; Zinner, Tobias ; Zöger, Martin
    The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
  • Article
    Importance of carbon-nitrogen interactions and ozone on ecosystem hydrology during the 21st century
    (American Geophysical Union, 2009-03-18) Felzer, Benjamin S. ; Cronin, Timothy W. ; Melillo, Jerry M. ; Kicklighter, David W. ; Schlosser, C. Adam
    There is evidence that increasing CO2 concentrations have reduced evapotranspiration and increased runoff through reductions in stomatal conductance during the twentieth century. While this process will continue to counteract increased evapotranspiration associated with future warming, it is highly dependent upon concurrent changes in photosynthesis, especially due to CO2 fertilization, nitrogen limitation, and ozone exposure. A new version of the Terrestrial Ecosystem Model (TEM-Hydro) was developed to examine the effects of carbon and nitrogen on the water cycle. We used two climate models (NCAR CCSM3 and DOE PCM) and two emissions scenarios (SRES B1 and A2) to examine the effects of climate, elevated CO2, nitrogen limitation, and ozone exposure on the hydrological cycle in the eastern United States. While the direction of future runoff changes is largely dependent upon predicted precipitation changes, the effects of elevated CO2 on ecosystem function (stomatal closure and CO2 fertilization) increase runoff by 3–7%, as compared to the effects of climate alone. Consideration of nitrogen limitation and ozone damage on photosynthesis increases runoff by a further 6–11%. Failure to consider the effects of the interactions among nitrogen, ozone, and elevated CO2 may lead to significant regional underestimates of future runoff.