Zhao
Ning
Zhao
Ning
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleA synthesis of deglacial deep‐sea radiocarbon records and their (in)consistency with modern ocean ventilation(John Wiley & Sons, 2018-01-08) Zhao, Ning ; Marchal, Olivier ; Keigwin, Lloyd D. ; Amrhein, Daniel E. ; Gebbie, Geoffrey A.We present a synthesis of 1,361 deep‐sea radiocarbon data spanning the past 40 kyr and computed (for 14C‐dated records) from the same calibration to atmospheric 14C. The most notable feature in our compilation is a long‐term Δ14C decline in deep oceanic basins over the past 25 kyr. The Δ14C decline mirrors the drop in reconstructed atmospheric Δ14C, suggesting that it may reflect a decrease in global 14C inventory rather than a redistribution of 14C among different reservoirs. Motivated by this observation, we explore the extent to which the deep water Δ14C data jointly require changes in basin‐scale ventilation during the last deglaciation, based on the fit of a 16‐box model of modern ocean ventilation to the deep water Δ14C records. We find that the fit residuals can largely be explained by data uncertainties and that the surface water Δ14C values producing the fit are within the bounds provided by contemporaneous values of atmospheric and deep water Δ14C. On the other hand, some of the surface Δ14C values in the northern North Atlantic and the Southern Ocean deviate from the values expected from atmospheric 14CO2 and CO2 concentrations during the Heinrich Stadial 1 and the Bølling‐Allerød. The possibility that deep water Δ14C records reflect some combination of changes in deep circulation and surface water reservoir ages cannot be ruled out and will need to be investigated with a more complete model.
-
ArticleOn the estimation of deep Atlantic ventilation from fossil radiocarbon records. part I: modern reference estimates(American Meteorological Society, 2021-05-18) Marchal, Olivier ; Zhao, NingRadiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of two companion papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in Part II. We find that, for all estimates, the meridional transport integrated zonally and averaged over a hemisphere, ⟨Vk⟩, is southward between 1000 and 4000 m in both hemispheres, northward between 4000 and 5000 m in the South Atlantic, and insignificant between 4000 and 5000 m in the North Atlantic. Estimates of ⟨Vk⟩ obtained from two distinct prior circulations—one based on a level of no motion at 4000 m and one based on Argo float velocities at 1000 m—become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk=Vk/⟨Vk⟩, where Vk is the volume of the kth layer, is estimated to about a century between 1000 and 3000 m in both the South and North Atlantic, 124 ± 9 yr (203 ± 23 yr) between 3000 and 4000 m in the South (North) Atlantic, and 269 ± 115 yr between 4000 and 5000 m in the South Atlantic.
-
ArticleAn atmospheric chronology for the glacial-deglacial Eastern Equatorial Pacific(Nature Publishing Group, 2018-08-06) Zhao, Ning ; Keigwin, Lloyd D.Paleoclimate reconstructions are only as good as their chronology. In particular, different chronological assumptions for marine sediment cores can lead to different reconstructions of ocean ventilation age and atmosphere−ocean carbon exchange history. Here we build the first high-resolution chronology that is free of the dating uncertainties common in marine sediment records, based on radiocarbon dating twigs found with computed tomography scans in two cores from the Eastern Equatorial Pacific (EEP). With this accurate chronology, we show that the ventilation ages of the EEP thermocline and intermediate waters were similar to today during the Last Glacial Maximum and deglaciation, in contradiction with previous studies. Our results suggest that the glacial respired carbon pool in the EEP was not significantly older than today, and that the deglacial strengthening of the equatorial Pacific carbon source was probably driven by low-latitude processes rather than an increased subsurface supply of upwelled carbon from high-latitude oceans.
-
ThesisReconstructing deglacial ocean ventilation using radiocarbon : data and inverse modeling(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02) Zhao, NingSignificant changes occurred during the last deglaciation (roughly 10-20 thousand years (ka) before present) throughout the climate system. The ocean is a large reservoir of carbon and heat, however, its role during the deglaciation is still not well understood. In this thesis, I rely on radiocarbon measurements on fossil biogenic carbonates sampled from the seafloor to constrain deglacial ocean ventilation rates, using new data, an extensive data compilation, and inverse modeling. First, based on a sediment core that is absolutely dated from wooden remains, I argue that the deglacial 14C reservoir age of the upper East Equatorial Pacific was not very different from today. Combined with stable carbon isotope data, the results suggest that the deglacial atmospheric CO2 rise was probably due to CO2 released directly from the ocean (e.g., in the Southern Ocean) to the atmosphere rather than first mixed through the upper ocean. Then using a high-deposition-rate sediment core located close to deep water formation regions in the western North Atlantic, I show that compared to today, the mid-depth water production in the North Atlantic was probably stronger during the Younger Dryas cold episode, and weaker during other intervals of the late deglaciation. However, the change was not as large as suggested by previous studies. Finally, I compile published and unpublished deep ocean 14C data, and find that the 14C activity of the deep ocean mirrors that of the atmosphere during the past 25 ka. A box model of modern ocean circulation is fit to the compiled data using an inverse method. I find that the residuals of the fit can generally be explained by the data uncertainties, implying that the compiled data jointly do not provide strong evidence for basin-scale ventilation changes. Overall, this thesis suggests that, although deep ocean ventilation may have varied at some locations during the last deglaciation, the occurrence of basin-scale ventilation changes are much more difficult to be put on a firm footing. An imbalance between cosmogenic production and radioactive decay appears as the most natural explanation for the deglacial 14C activity decline observed in both the atmosphere and the deep ocean.
-
ArticleOn the estimation of deep Atlantic ventilation from fossil radiocarbon records. Part II: (in)consistency with modern estimates(American Meteorological Society, 2021-08-01) Marchal, Olivier ; Zhao, NingMeasurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reflecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A Δ14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the Δ14C transport equation, and its boundary conditions. We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20% to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of 2. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. While deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.
-
PreprintDeglacial floods in the Beaufort Sea preceded Younger Dryas cooling( 2018-05) Keigwin, Lloyd D. ; Klotsko, Shannon ; Zhao, Ning ; Reilly, Brendan ; Giosan, Liviu ; Driscoll, Neal W.The Younger Dryas cooling at ~13 ka, after 2 kyr of postglacial warming, is a century-old climate problem. The Younger Dryas is thought to have resulted from a slow-down of the Atlantic meridional overturning circulation in response to a sudden flood of Laurentide Ice Sheet meltwater that reached the Nordic Seas. Although there is no oxygen isotope evidence in planktonic foraminifera from the open western North Atlantic for a local source of meltwater from the Gulf of St. Lawrence where it was predicted, we report here that the eastern Beaufort Sea contains the long-sought signal of 18O-depleted water. Beginning at ~12.94 ± 0.15 ka, oxygen isotopes in planktonic foraminifera from two sediment cores as well as sediment and seismic data indicate a flood of melt water, ice and sediment to the Arctic via Mackenzie River that lasted about 700 years. The minimum in oxygen isotope ratios lasted ~130 years. The floodwater would have travelled north along the Canadian Archipelago, and through Fram Strait to the Nordic Seas where freshening and freezing near sites of deepwater formation would have suppressed convection, and caused the Younger Dryas cooling by reducing the meridional overturning
-
ArticleGlacial-interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet(Nature Research, 2019-12-18) Zhao, Ning ; Oppo, Delia W. ; Huang, Kuo-Fang ; Howe, Jacob N. W. ; Blusztajn, Jerzy S. ; Keigwin, Lloyd D.The Nd isotope composition of seawater has been used to reconstruct past changes in the contribution of different water masses to the deep ocean. In the absence of contrary information, the Nd isotope compositions of endmember water masses are usually assumed constant during the Quaternary. Here we show that the Nd isotope composition of North Atlantic Deep Water (NADW), a major component of the global overturning ocean circulation, was significantly more radiogenic than modern during the Last Glacial Maximum (LGM), and shifted towards modern values during the deglaciation. We propose that weathering contributions of unradiogenic Nd modulated by the North American Ice Sheet dominated the evolution of the NADW Nd isotope endmember. If water mass mixing dominated the distribution of deep glacial Atlantic Nd isotopes, our results would imply a larger fraction of NADW in the deep Atlantic during the LGM and deglaciation than reconstructed with a constant northern endmember.