Jessup Andrew T.

No Thumbnail Available
Last Name
Jessup
First Name
Andrew T.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Sea surface temperature signatures of oceanic internal waves in low winds
    (American Geophysical Union, 2007-06-20) Farrar, J. Thomas ; Zappa, Christopher J. ; Weller, Robert A. ; Jessup, Andrew T.
    In aerial surveys conducted during the Tropical Ocean–Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. Under conditions of weak winds and strong insolation (which favor formation of a diurnal warm layer), the data reveal a link between the spatially periodic SST fluctuations and subsurface temperature and velocity fluctuations associated with oceanic internal waves, suggesting that some mechanism involving the diurnal warm layer is responsible for the observed signal. Internal-wave signals in skin temperature very closely resemble temperature signals measured at a depth of about 20 cm, indicating that the observed internal-wave SST signal is not a result of modulation of the cool-skin effect. Numerical experiments using a one-dimensional upper ocean model support the notion that internal-wave heaving of the warm-layer base can produce alternating bands of relatively warm and cool SST through the combined effects of surface heating and modulation of wind-driven vertical shear.
  • Article
    Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients
    (American Geophysical Union, 2004-06-30) Ward, Brian ; Wanninkhof, Rik ; McGillis, Wade R. ; Jessup, Andrew T. ; DeGrandpre, Michael D. ; Hare, Jeffrey E. ; Edson, James B.
    The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.
  • Article
    From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum
    (The Oceanography Society, 2015-03) Schmitt, Raymond W. ; Asher, William E. ; Bingham, Frederick ; Carton, James A. ; Centurioni, Luca R. ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hodges, Benjamin A. ; Jessup, Andrew T. ; Kessler, William S. ; Rainville, Luc ; Shcherbina, Andrey Y.
    One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address.
  • Thesis
    Detection and characterization of deep water wave breaking using moderate incidence angle microwave backscatter from the sea surface
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1990-05) Jessup, Andrew T.
    The importance of wave breaking in both microwave remote sensing and air-sea interaction has led to this investigation of the utility of a Ku-Band CW Doppler scatterometer to detect and characterize wave breaking in the open ocean. Field and laboratory measurements by previous authors of microwave backscatter from sharp-crested and breaking waves have shown that these events can exhibit characteristic signatures in moderate incidence angle measurements of the radar cross-section (RCS) and Doppler spectrum. Specifically, breaking events have been associated with polarization independent sea spikes in the RCS accompanied by increased mean frequency and bandwidth of the Doppler spectrum. Simultaneous microwave, video, and environmental measurements were made during the SAXON experiment off Chesapeake Bay in the fall of 1988. The scatterometer was pointed upwind with an incidence angle of 45 degrees and an illumination area small compared to the wavelength of the dominant surface waves. An autocovariance estimation technique was used to produced time series of the RCS, mean Doppler frequency, and Doppler spectral bandwidth in real-time. The joint statistics of the microwave quantities indicative of breaking are used to investigate detection schemes for breaking events identified from the video recordings. The most successful scheme is based on thresholds in both the RCS and the Doppler bandwidth determined from joint distributions for breaking and non-breaking waves. Microwave events consisting of a sea spike in the RCS accompanied by a large bandwidth are associated with the steep forward face of waves in the early stages of breaking. The location of the illumination area with respect to the phase of the breaking wave, the stage of breaking development, and the orientation of an individual crest with respect to the antenna look-direction all influence the detect ability of a breaking event occurring in the vicinity of the radar spot. Since sea spikes tend to occur on the forward face of waves in the process of breaking, the whitecap associated with a given sea spike may occur after the crest of the wave responsible for the sea spike has passed the center of the illumination area. Approximately 70% of the waves which produce whitecaps within a distance of 5m of the bore sight location are successfully identified by a threshold-based detection scheme utilizing both RCS and bandwidth information. The sea spike statistics are investigated as functions of wave field parameters and friction velocity u*. For VV and HH polarization, the frequency of sea spike occurrence and the sea spike contribution to the mean RCS show an approximately cubic dependence on u*, which is consistent with theoretical modelling and various measures of whitecap coverage. The data also suggest that the average RCS of an individual sea spike is not dependent on u*. At high friction velocities (u*≈40-50cms-l), the contribution of sea spikes to the mean RCS is in the range of 5-10% for VV and 10-20% for HH. The wind speed dependence of the percentage of crests producing sea spikes is comparable to that of the fraction of breaking crests reported by previous authors. The percentage of wave crests producing sea spikes is found to vary approximately as (Re*)1.5, where Re* is a Reynolds number based on u* and the dominant surface wavelength. This result agrees with measurements of the degree of wave breaking by. previous authors and is shown to be consistent with a cubic dependence on u *. Models for the probability of wave breaking as a function of moments of the wave height spectrum are compared to our results. The Doppler frequency and bandwidth measurements are also used to inquire into the kinematics of the breaking process.