Jagoutz
Oliver
Jagoutz
Oliver
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleWISTFUL: whole‐rock interpretative seismic toolbox for ultramafic lithologies(American Geophysical Union, 2022-08-11) Shinevar, William J. ; Jagoutz, Oliver ; Behn, Mark D.To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce the Whole-rock Interpretative Seismic Toolbox For Ultramafic Lithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole-rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P) and temperature (T) (P = 0.5–6 GPa, T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces: WISTFUL_relations, which plots relationships between calculated parameters and/or composition; WISTFUL_geotherms, which calculates seismic wave speeds along geotherms; and WISTFUL_inversion, which inverts seismic wave speeds for best-fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well-studied ultramafic xenoliths with known whole-rock compositions, mineral modes, and estimated P-T conditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018, https://doi.org/10.1093/petrology/egy048) solution models best reproduce phase assemblages (∼12 vol. % phase root-mean-square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (Vp RMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool.
-
ArticleConstraints on the composition of the Aleutian arc lower crust from VP/VS(John Wiley & Sons, 2013-06-07) Shillington, Donna J. ; Van Avendonk, Harm J. A. ; Behn, Mark D. ; Kelemen, Peter B. ; Jagoutz, OliverDetermining the bulk composition of island arc lower crust is essential for distinguishing between competing models for arc magmatism and assessing the stability of arc lower crust. We present new constraints on the composition of high P-wave velocity (VP = 7.3–7.6 km/s) lower crust of the Aleutian arc from best-fitting average lower crustal VP/VS ratio using sparse converted S-waves from an along-arc refraction profile. We find a low VP/VS of ~1.7–1.75. Using petrologic modeling, we show that no single composition is likely to explain the combination of high VP and low VP/VS. Our preferred explanation is a combination of clinopyroxenite (~50–70%) and alpha-quartz bearing gabbros (~30–50%). This is consistent with Aleutian xenoliths and lower crustal rocks in obducted arcs, and implies that ~30–40% of the full Aleutian crust comprises ultramafic cumulates. These results also suggest that small amounts of quartz can exert a strong influence on VP/VS in arc crust.
-
ArticleMantle thermochemical variations beneath the continental United States through petrologic interpretation of seismic tomography(Elsevier, 2023-01-04) Shinevar, William J. ; Golos, Eva M. ; Jagoutz, Oliver ; Behn, Mark D. ; van der Hilst, Robert D.The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900°C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850°C at 60 km), with higher temperatures (up to 1000°C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000°C at 60 km, >1200°C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.•MITPS_20, a continental US tomographic model, is interpreted in terms of temperature, composition, and density.•Our method predicts temperatures of 260–1430°C, Mg# of 85–92, and density between 3230–3370 kgm−3 between 60–100 km.•Predicted compositional buoyancy of the mantle lithosphere compensates only part (40%) of the negative thermal buoyancy.