Shaw Alison M.

No Thumbnail Available
Last Name
Shaw
First Name
Alison M.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Flux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano
    (American Geophysical Union, 2012-11-29) Dziak, Robert P. ; Baker, Edward T. ; Shaw, Alison M. ; Bohnenstiehl, DelWayne R. ; Chadwick, William W. ; Haxel, Joseph H. ; Matsumoto, Haru ; Walker, Sharon L.
    The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
  • Article
    Insight into volatile behavior at Nyamuragira volcano (D.R. Congo, Africa) through olivine-hosted melt inclusions
    (American Geophysical Union, 2011-10-04) Head, Elisabet M. ; Shaw, Alison M. ; Wallace, Paul J. ; Sims, Kenneth W. W. ; Carn, Simon A.
    We present new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic eruptions of Nyamuragira volcano (1912, 1938, 1948, 1986, 2006). Host-olivine Mg#'s range from 71 to 84, with the exception of the 1912 sample (Mg# = 90). Inclusion compositions extend from alkali basalts to basanite-tephrites. Our results indicate inclusion entrapment over depths ranging from 3 to 5 km, which agree with independent estimates of magma storage depths (3–7 km) based on geophysical methods. Melt compositions derived from the 1986 and 2006 Nyamuragira tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. Volatile concentrations of the 1986 and 2006 samples are as follows: H2O ranged from 0.6 to 1.4 wt %, CO2 from 350 to 1900 ppm, S from 1300 to 2400 ppm, Cl from 720 to 990 ppm, and F from 1500 to 2200 ppm. Based on FeOT and S data, we suggest that Nyamuragira magmas have higher fO2 (>NNO) than MORB. We estimate the total amount of sulfur dioxide (SO2) released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) Nyamuragira eruptions using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ∼1 Mt; 2006 = ∼2 Mt). Potential explanations for this observation are: (1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or (2) syn-eruptive gas release from unerupted magma.
  • Article
    Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions
    (John Wiley & Sons, 2015-01-20) Wanless, V. Dorsey ; Shaw, Alison M. ; Behn, Mark D. ; Soule, Samuel A. ; Escartin, Javier E. ; Hamelin, Cedric
    Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300–3000 bars, corresponding to depths of 0.5–9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3–4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths > 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.
  • Preprint
    Lower crustal crystallization and melt evolution at mid-ocean ridges
    ( 2012-07-08) Wanless, V. Dorsey ; Shaw, Alison M.
    Mid-ocean ridge magma is produced when Earth’s mantle rises beneath the ridge axis and melts as a result of the decrease in pressure. This magma subsequently undergoes cooling and crystallization to form the oceanic crust. However, there is no consensus on where within the crust or upper mantle crystallization occurs1-5. Here we provide direct geochemical evidence for the depths of crystallization beneath ridge axes of two spreading centres located in the Pacific Ocean: the fast-spreading-rate East Pacific Rise and intermediate-spreading-rate Juan de Fuca Ridge. Specifically, we measure volatile concentrations in olivine-hosted melt inclusions to derive vapour-saturation pressures and to calculate crystallisation depth. We also analyse the melt inclusions for major and trace element concentrations, allowing us to compare the distributions of crystallisation and to track the evolution of the melt during ascent through the oceanic crust. We find that most crystallisation occurs within a seismically-imaged melt lens located in the shallow crust at both ridges, but over 25% of the melt inclusions have crystallisation pressures consistent with formation in the lower oceanic crust. Furthermore, our results suggest that melts formed beneath the ridge axis can be efficiently mixed and undergo olivine crystallisation in the mantle, prior to ascent into the ocean crust.