Collins John A.

No Thumbnail Available
Last Name
Collins
First Name
John A.
ORCID
0000-0002-1040-7782

Search Results

Now showing 1 - 20 of 40
  • Article
    A long-term geothermal observatory across subseafloor gas hydrates, IODP Hole U1364A, Cascadia accretionary prism
    (Frontiers Media, 2020-12-21) Becker, Keir ; Davis, Earl E. ; Heesemann, Martin ; Collins, John A. ; McGuire, Jeffrey J.
    We report 4 years of temperature profiles collected from May 2014 to May 2018 in Integrated Ocean Drilling Program Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The temperature data extend to depths of nearly 300 m below seafloor (mbsf), spanning the gas hydrate stability zone at the location and a clear bottom-simulating reflector (BSR) at ∼230 mbsf. When the hole was drilled in 2010, a pressure-monitoring Advanced CORK (ACORK) observatory was installed, sealed at the bottom by a bridge plug and cement below 302 mbsf. In May 2014, a temperature profile was collected by lowering a probe down the hole from the ROV ROPOS. From July 2016 through May 2018, temperature data were collected during a nearly two-year deployment of a 24-thermistor cable installed to 268 m below seafloor (mbsf). The cable and a seismic-tilt instrument package also deployed in 2016 were connected to the Ocean Networks Canada (ONC) NEPTUNE cabled observatory in June of 2017, after which the thermistor temperatures were logged by Ocean Networks Canada at one-minute intervals until failure of the main ethernet switch in the integrated seafloor control unit in May 2018. The thermistor array had been designed with concentrated vertical spacing around the bottom-simulating reflector and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The 4 years of data show a generally linear temperature gradient of 0.055°C/m consistent with a heat flux of 61–64 mW/m2. The data show no indications of thermal transients. A slight departure from a linear gradient provides an approximate limit of ∼10−10 m/s for any possible slow upward advection of pore fluids. In-situ temperatures are ∼15.8°C at the BSR position, consistent with methane hydrate stability at that depth and pressure.
  • Article
    Azimuthal seismic anisotropy of 70-ma Pacific-plate upper mantle.
    (American Geophysical Union, 2019-01-28) Mark, Hannah ; Lizarralde, Daniel ; Collins, John ; Miller, Nathaniel C. ; Hirth, Greg ; Gaherty, James B. ; Evans, Rob L.
    Plate formation and evolution processes are predicted to generate upper mantle seismic anisotropy and negative vertical velocity gradients in oceanic lithosphere. However, predictions for upper mantle seismic velocity structure do not fully agree with the results of seismic experiments. The strength of anisotropy observed in the upper mantle varies widely. Further, many refraction studies observe a fast direction of anisotropy rotated several degrees with respect to the paleospreading direction, suggesting that upper mantle anisotropy records processes other than 2‐D corner flow and plate‐driven shear near mid‐ocean ridges. We measure 6.0 ± 0.3% anisotropy at the Moho in 70‐Ma lithosphere in the central Pacific with a fast direction parallel to paleospreading, consistent with mineral alignment by 2‐D mantle flow near a mid‐ocean ridge. We also find an increase in the strength of anisotropy with depth, with vertical velocity gradients estimated at 0.02 km/s/km in the fast direction and 0 km/s/km in the slow direction. The increase in anisotropy with depth can be explained by mechanisms for producing anisotropy other than intrinsic effects from mineral fabric, such as aligned cracks or other structures. This measurement of seismic anisotropy and gradients reflects the effects of both plate formation and evolution processes on seismic velocity structure in mature oceanic lithosphere, and can serve as a reference for future studies to investigate the processes involved in lithospheric formation and evolution.
  • Article
    Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere
    (John Wiley & Sons, 2014-10-23) Collins, John A. ; Molnar, Peter H.
    Pn travel times from regional earthquakes recorded both by stations on New Zealand and by ocean bottom seismographs deployed offshore indicate anisotropy in the uppermost mantle beneath the region. The largest anisotropy of ~8% (±2%, 1σ) lies beneath the deforming part of the South Island to just off its West Coast, a zone roughly 100–200 km wide. The fastest propagation is aligned N60°E (±3°), essentially parallel to the largely strike-slip relative plate motion since 20 Ma, also ~ N60°E. The magnitude of anisotropy decreases abruptly northwest and southeast of this zone, and on the southeast side of the island, the orientation of fastest propagation is between N32°W and N-S. The ~ N60°E orientation of fast propagation is consistent with finite strain within the uppermost part of the mantle lithosphere if the measured 850 km of displacement of the Pacific plate past the Australia plate is spread over a region with a width of 100–200 km. The agreement of this orientation of fast propagation with the orientation or relative plate motion suggests the possibility of but does not require some dynamic recrystallization in rock as cold as 500–800°C, where Peierls creep seems to be the likely deformation mechanism. Such a strain distribution matches deformation of a thin viscous sheet that obeys a constitutive relationship of the form inline image, where inline image is the average strain rate and τ is the operative deviatoric stress, with an average value of n ≈ 3–10. Presumably, the NW-SE fast propagation in the region southeast of the island results from strain that precedes the Cenozoic deformation that has shaped the island.
  • Article
    Lower crustal variability and the crust/mantle transition at the Atlantis Massif oceanic core complex
    (American Geophysical Union, 2010-12-18) Blackman, Donna K. ; Collins, John A.
    Seismic refraction data provide new constraints on the structure of the lower oceanic crust and its variability across the Atlantis Massif oceanic core complex, ∼30°N on the Mid-Atlantic Ridge. A 40 km-long spreading-parallel profile constrains P-wave velocities to depths of up to ∼7 km beneath the seafloor. Two shorter spreading-perpendicular lines provide coverage to ∼2 km depth. The anomalous character of the massif's central dome crust is clear compared to the neighboring rift valley and similar-age crust on the opposite ridge flank. The domal core of the massif, unroofed via detachment faulting, has velocities >7.0 km/s at depths below ∼2.5 km sub-seafloor, increasing to 7.5–7.8 km/s over the depth range 4.8–6.8 km. Within the core complex, the Moho does not appear to be sharp as no PmP arrivals are observed. Within the axial valley, velocities do not reach mantle-transition zone values in the uppermost 6 km. We infer that crust there is of normal thickness but that a thinner than average mafic section is present in the central massif. Near IODP Hole U1309D, located on the central dome, there is a low velocity gradient interval at 1–3 km depth with velocities of 6.6–6.8 km/s, that coincides with a 3–5 km wide region where shallower velocities are highest. Given the predominantly gabbroic section recovered from the 1.4 km deep drillhole, this seismic structure suggests that the mafic body extends a few km both laterally and vertically.
  • Article
    Imaging along-strike variations in mechanical properties of the Gofar transform fault, East Pacific Rise
    (John Wiley & Sons, 2014-09-23) Froment, B. ; McGuire, Jeffrey J. ; van der Hilst, R. D. ; Gouedard, P. ; Roland, Emily C. ; Zhang, H. ; Collins, John A.
    A large part of global plate motion on mid-ocean ridge transform faults (RTFs) is not accommodated as major earthquakes. When large earthquakes do occur, they often repeat quasiperiodically. We focus here on the high slip rate (∼14 cm/yr) Gofar transform fault on the equatorial East Pacific Rise. This fault is subdivided into patches that slip during Mw 5.5–6 earthquakes every 5 to 6 years. These patches are separated by rupture barriers that accommodate slip through swarms of smaller events and/or aseismic creep. We performed an imaging study to investigate which spatiotemporal variations of the fault zone properties control this segmentation in mechanical behavior and could explain the specific behavior of RTFs at the global scale. We adopt a double-difference approach in a joint inversion of active air gun shots and microseismicity recorded for 1 year. This data set includes the 2008 Mw 6 Gofar earthquake. The along-strike P wave velocity structure reveals an abrupt transition between the barrier area, characterized by a damaged fault zone of 10–20% reduced Vp and a nearly intact fault zone in the asperity area. The importance of the strength of the damage zone on the mechanical behavior is supported by the temporal S wave velocity changes which suggest increased damage within the barrier area, during the week preceding the Mw 6 earthquake. Our results support the conclusion that extended highly damaged zones are the key factor in limiting the role of major earthquakes to accommodate plate motion along RTFs.
  • Article
    Interferometry of infragravity waves off New Zealand
    (John Wiley & Sons, 2014-02-18) Godin, Oleg A. ; Zabotin, Nikolay A. ; Sheehan, Anne F. ; Collins, John A.
    Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two-point cross-correlation functions of random wavefields. Here we apply interferometry to yearlong records of seafloor pressure at 28 locations off New Zealand's South Island to investigate propagation and directivity properties of infragravity waves away from shore. A compressed cross-correlation function technique is proposed to make the interferometry of dispersive waves more robust, decrease the necessary noise averaging time, and simplify retrieval of quantitative information from noise cross correlations. The emergence of deterministic wave arrivals from cross correlations of random wavefields is observed up to the maximum range of 692 km between the pressure sensors in the array. Free, linear waves with a strongly anisotropic distribution of power flux density are found to be dominant in the infragravity wavefield. Lowest-frequency components of the infragravity wavefield are largely isotropic. The anisotropy has its maximum in the middle of the spectral band and decreases at the high-frequency end of the spectrum. Highest anisotropy peaks correspond to waves coming from portions of the New Zealand's shoreline. Significant contributions are also observed from waves propagating along the coastline and probably coming from powerful sources in the northeast Pacific. Infragravity wave directivity is markedly different to the east and to the west of the South Island. The northwest coast of the South Island is found to be a net source of the infragravity wave energy.
  • Article
    The Cascadia Initiative : a sea change In seismological studies of subduction zones
    (The Oceanography Society, 2014-06) Toomey, Douglas R. ; Allen, Richard M. ; Barclay, Andrew H. ; Bell, Samuel W. ; Bromirski, Peter D. ; Carlson, Richard L. ; Chen, Xiaowei ; Collins, John A. ; Dziak, Robert P. ; Evers, Brent ; Forsyth, Donald W. ; Gerstoft, Peter ; Hooft, Emilie E. E. ; Livelybrooks, Dean ; Lodewyk, Jessica A. ; Luther, Douglas S. ; McGuire, Jeffrey J. ; Schwartz, Susan Y. ; Tolstoy, Maya ; Trehu, Anne M. ; Weirathmueller, Michelle ; Wilcock, William S. D.
    Increasing public awareness that the Cascadia subduction zone in the Pacific Northwest is capable of great earthquakes (magnitude 9 and greater) motivates the Cascadia Initiative, an ambitious onshore/offshore seismic and geodetic experiment that takes advantage of an amphibious array to study questions ranging from megathrust earthquakes, to volcanic arc structure, to the formation, deformation and hydration of the Juan De Fuca and Gorda Plates. Here, we provide an overview of the Cascadia Initiative, including its primary science objectives, its experimental design and implementation, and a preview of how the resulting data are being used by a diverse and growing scientific community. The Cascadia Initiative also exemplifies how new technology and community-based experiments are opening up frontiers for marine science. The new technology—shielded ocean bottom seismometers—is allowing more routine investigation of the source zone of megathrust earthquakes, which almost exclusively lies offshore and in shallow water. The Cascadia Initiative offers opportunities and accompanying challenges to a rapidly expanding community of those who use ocean bottom seismic data.
  • Article
    Seismicity of the Atlantis Massif detachment fault, 30°N at the Mid-Atlantic Ridge
    (American Geophysical Union, 2012-10-09) Collins, John A. ; Smith, Deborah K. ; McGuire, Jeffrey J.
    At the oceanic core complex that forms the Atlantis Massif at 30°N on the Mid-Atlantic Ridge, slip along the detachment fault for the last 1.5–2 Ma has brought lower crust and mantle rocks to the seafloor. Hydroacoustic data collected between 1999 and 2003 suggest that seismicity occurred near the top of the Massif, mostly on the southeastern section, while detected seismicity along the adjacent ridge axis was sparse. In 2005, five short-period ocean bottom seismographs (OBS) were deployed on and around the Massif as a pilot experiment to help constrain the distribution of seismicity in this region. Analysis of six months of OBS data indicates that, in contrast to the results of the earlier hydroacoustic study, the vast majority of the seismicity is located within the axial valley. During the OBS deployment, and within the array, seismicity was primarily composed of a relatively constant background rate and two large aftershock sequences that included 5 teleseismic events with magnitudes between 4.0 and 4.5. The aftershock sequences were located on the western side of the axial valley adjacent to the Atlantis Massif and close to the ridge-transform intersection. They follow Omori's law, and constitute more than half of the detected earthquakes. The OBS data also indicate a low but persistent level of seismicity associated with active faulting within the Atlantis Massif in the same region as the hydroacoustically detected seismicity. Within the Massif, the data indicate a north-south striking normal fault, and a left-lateral, strike-slip fault near a prominent, transform-parallel, north-facing scarp. Both features could be explained by changes in the stress field at the inside corner associated with weak coupling on the Atlantis transform. Alternatively, the normal faulting within the Massif might indicate deformation of the detachment surface as it rolls over to near horizontal from an initial dip of about 60° beneath the axis, and the strike-slip events may indicate transform-parallel movement on adjacent detachment surfaces.
  • Article
    Seismological evidence for girdled olivine lattice‐preferred orientation in oceanic lithosphere and implications for mantle deformation processes during seafloor spreading
    (American Geophysical Union, 2022-10-03) Russell, Joshua B. ; Gaherty, James B. ; Mark, Hannah F. ; Hirth, Greg ; Hansen, Lars N. ; Lizarralde, Daniel ; Collins, John A. ; Evans, Rob L.
    Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid‐ocean ridge (MOR) dynamics. Yet, interpreting anisotropy in the context of grain‐scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co‐located compressional‐ and shear‐wavespeed anisotropy observations at the NoMelt experiment located on ∼70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil‐spreading direction, consistent with corner‐flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250%–400% in the shallow mantle. We find evidence for D‐type olivine lattice‐preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D‐type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during MOR spreading; we hypothesize that grain‐boundary sliding during dislocation creep relaxes strain compatibility, allowing D‐type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation‐accommodated grain‐boundary sliding (disGBS) has implications for in situ stress and grain size during MOR spreading and implies grain‐size dependent deformation, in contrast to pure dislocation creep.
  • Article
    An attenuation study of body waves in the south‐central region of the Gulf of California, México
    (Seismological Society of America, 2014-07) Vidales‐Basurto, Claudia A. ; Castro, Raul R. ; Huerta, Carlos I. ; Sumy, Danielle F. ; Gaherty, James B. ; Collins, John A.
    We studied the seismic attenuation of body waves in the south‐central region of the Gulf of California (GoC) with records from the Network of Autonomously Recording Seismographs of Baja California (NARS‐Baja), from the Centro de Investigación Científica y de Educación Superior de Ensenada’s Broadband Seismological Network of the GoC (RESBAN), and from the ocean‐bottom seismographs (OBS) deployed as part of the Sea of Cortez Ocean Bottom Array experiment (SCOOBA). We examine 27 well‐located earthquakes reported in Sumy et al. (2013) that occurred from October 2005 to October 2006 with magnitudes (Mw) between 3.5 and 4.8. We estimated S‐wave site effects by calculating horizontal‐to‐vertical spectral ratios and determined attenuation functions with a nonparametric model by inverting the observed spectral amplitudes of 21 frequencies between 0.13 and 12.59 Hz for the SCOOBA (OBS) stations and 19 frequencies between 0.16 and 7.94 Hz for NARS‐Baja and RESBAN stations. We calculated the geometrical spreading and the attenuation (1/Q) factors for two distance intervals (10–120 and 120–220 km, respectively) for each frequency considered. The estimates of Q obtained with the SCOOBA (OBS) records for the interval 10–120 km indicate that the P waves attenuate more than S waves (QP=34±1.2f 0.82±0.10, QS=59±1.1f 0.90±0.03) for frequencies between 0.6 and 12.6 Hz; whereas for the 120–220 km interval, where ray paths travel deeper, S waves attenuate more than P waves (QP=117±1.3f 0.44±0.19, QS=51±1.2f 1.12±0.11). The estimates of Q obtained using NARS‐Baja and RESBAN records, within 10–120 km, indicate that P waves attenuate more than S waves (QP=69±1.2f 0.87±0.16, QS=176±1.4f 0.61±0.26) at frequencies between 0.3 and 6.3 Hz; whereas at the 120–220 km distance interval S waves attenuate slightly more than P waves (QP=39±1.1f 0.64±0.06, QS=48±1.1f 0.37±0.07) at high frequencies (f>3  Hz). These results, based on a unique OBS dataset, provide an indirect mean to constrain future models of the thermal structure beneath the GoC.
  • Article
    High-resolution constraints on pacific upper mantle petrofabric inferred from surface-wave anisotropy.
    (American Geophysical Union, 2018-12-26) Russell, Joshua B. ; Gaherty, James B. ; Lin, Pei-Ying Patty ; Lizarralde, Daniel ; Collins, John A. ; Hirth, Greg ; Evans, Rob L.
    Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θ and 4θ variations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θ variation in VSV with fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θ variation in VSH with a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales. VSV remains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.
  • Article
    Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS : implications for regional tectonics
    (John Wiley & Sons, 2009-10-28) Kuo, Ban-Yuan ; Chi, Wu-Cheng ; Lin, Ching-Ren ; Chang, Emmy Tsui-Yu ; Collins, John A. ; Liu, Char-Shine
    A broad-band ocean-bottom seismometer (OBS) deployed ~180 km east of Taiwan provides a first glimpse into the upper mantle beneath the westernmost section of the Philippine Sea or the Huatung basin (HB). We measured interstation phase velocities of Rayleigh waves between the OBS and stations on the eastern coast of Taiwan. The phase velocities show smooth variations from 3.8 to 3.9 km s−1 for periods of 25–40 s. In this short period range, phase velocities are comparable to those characterizing the 15–30 Ma Parece-Vela basin of the Philippine Sea. Modelling of the finite-frequency effect proves the validity of the measurement for the average HB. The shear-wave velocity models inverted from the 25 to 40 s dispersion show a velocity at lithospheric depths about 0.1 km s−1 lower than that of the west Philippine Sea, which agrees with the age effect derived from the Pacific pure-path model. Inversions incorporating the less reliable data above 40 s yield a shear velocity <4.0 km s−1 below 150 km, an unrealistic value even for a hotspot plume environment. The seismological evidence, together with the correlation in seafloor depth, suggests that the HB and the Parece-Vela basin may have a similar age. This is at odds with the previous geochronological study suggesting an early-Cretaceous age for the HB. Thermal rejuvenation of the lithosphere was examined as a potential solution to reconciling the two age models.
  • Article
    The relationship between seismicity and fault structure on the Discovery transform fault, East Pacific Rise
    (John Wiley & Sons, 2014-09-29) Wolfson-Schwehr, Monica ; Boettcher, Margaret S. ; McGuire, Jeffrey J. ; Collins, John A.
    There is a global seismic moment deficit on mid-ocean ridge transform faults, and the largest earthquakes on these faults do not rupture the full fault area. We explore the influence of physical fault structure, including step-overs in the fault trace, on the seismic behavior of the Discovery transform fault, 4S on the East Pacific Rise. One year of microseismicity recorded during a 2008 ocean bottom seismograph deployment (24,377 0 inline image ML inline image 4.6 earthquakes) and 24 years of Mw inline image 5.4 earthquakes obtained from the Global Centroid Moment Tensor catalog, are correlated with surface fault structure delineated from high-resolution multibeam bathymetry. Each of the 15 5.4 inline image Mw inline image 6.0 earthquakes that occurred on Discovery between 1 January 1990 and 1 April 2014 was relocated into one of five distinct rupture patches using a teleseismic surface wave cross-correlation technique. Microseismicity was relocated using the HypoDD relocation algorithm. The western fault segment of Discovery (DW) is composed of three zones of varying structure and seismic behavior: a zone with no large events and abundant microseismicity, a fully coupled zone with large earthquakes, and a complex zone with multiple fault strands and abundant seismicity. In general, microseismicity is reduced within the patches defined by the large, repeating earthquakes. While the extent of the large rupture patches on DW correlates with physical features in the bathymetry, step-overs in the primary fault trace are not observed at patch boundaries, suggesting along-strike heterogeneity in fault zone properties controls the size and location of the large events.
  • Article
    Spatial and temporal variations in earthquake stress drop on Gofar Transform Fault, East Pacific Rise : implications for fault strength
    (John Wiley & Sons, 2018-09-07) Moyer, Pamela A. ; Boettcher, Margaret S. ; McGuire, Jeffrey J. ; Collins, John A.
    On Gofar Transform Fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ MW ≤ 6.2) have repeatedly ruptured the same portion of the fault, while intervening fault segments host swarms of microearthquakes. These long‐term patterns in earthquake occurrence suggest that heterogeneous fault zone properties control earthquake behavior. Using waveforms from ocean bottom seismometers that recorded seismicity before and after an anticipated 2008 MW 6.0 mainshock, we investigate the role that differences in material properties have on earthquake rupture at Gofar. We determine stress drop for 138 earthquakes (2.3 ≤ MW ≤ 4.0) that occurred within and between the rupture areas of large earthquakes. Stress drops are calculated from corner frequencies derived using an empirical Green's function spectral ratio method, and seismic moments are obtained by fitting the omega‐square source model to the low frequency amplitude of the displacement spectrum. Our analysis yields stress drops from 0.04 to 3.2 MPa with statistically significant spatial variation, including ~2 times higher average stress drop in fault segments where large earthquakes also occur compared to fault segments that host earthquake swarms. We find an inverse correlation between stress drop and P wave velocity reduction, which we interpret as the effect of fault zone damage on the ability of the fault to store strain energy that leads to our spatial variations in stress drop. Additionally, we observe lower stress drops following the MW 6.0 mainshock, consistent with increased damage and decreased fault strength after a large earthquake.
  • Article
    Constraints on the depth, thickness, and strength of the G Discontinuity in the Central Pacific from S Receiver Functions
    (American Geophysical Union, 2021-03-09) Mark, Hannah F. ; Collins, John A. ; Lizarralde, Daniel ; Hirth, Greg ; Gaherty, James B. ; Evans, Rob L. ; Behn, Mark D.
    The relative motion of the lithosphere with respect to the asthenosphere implies the existence of a boundary zone that accommodates shear between the rigid plates and flowing mantle. This shear zone is typically referred to as the lithosphere-asthenosphere boundary (LAB). The width of this zone and the mechanisms accommodating shear across it have important implications for coupling between mantle convection and surface plate motion. Seismic observations have provided evidence for several physical mechanisms that might help enable relative plate motion, but how these mechanisms each contribute to the overall accommodation of shear remains unclear. Here we present receiver function constraints on the discontinuity structure of the oceanic upper mantle at the NoMelt site in the central Pacific, where local constraints on shear velocity, anisotropy, conductivity, and attenuation down to ∼300 km depth provide a comprehensive picture of upper mantle structure. We image a seismic discontinuity with a Vsv decrease of 4.5% or more over a 0–20 km thick gradient layer centered at a depth of ∼65 km. We associate this feature with the Gutenberg discontinuity (G), and interpret our observation of G as resulting from strain localization across a dehydration boundary based on the good agreement between the discontinuity depth and that of the dry solidus. Transitions in Vsv, azimuthal anisotropy, conductivity, and attenuation observed at roughly similar depths suggest that the G discontinuity represents a region of localized strain within a broader zone accommodating shear between the lithosphere and asthenosphere.
  • Preprint
    Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand
    ( 2011-04) Collins, John A. ; Molnar, Peter H. ; Sheehan, Anne F.
    Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.
  • Article
    Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography
    (John Wiley & Sons, 2016-05-23) Ball, Justin S. ; Sheehan, Anne F. ; Stachnik, Joshua C. ; Lin, Fan-Chi ; Yeck, William ; Collins, John A.
    We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18–70 s period) and ambient noise-based (8–25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009–2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs < 4.4 km/s) body extending from near surface to greater than 75 km depth beneath the Banks and Otago Peninsulas and high-velocity (Vs~4.7 km/s) mantle anomalies underlying the Southern Alps and off the northwest coast of the South Island. Using the 4.5 km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau and central South Island is substantially greater than that of the inner Campbell Plateau. The high-velocity anomaly we resolve at subcrustal depths (>50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
  • Article
    Asymmetric shallow mantle structure beneath the Hawaiian Swell—evidence from Rayleigh waves recorded by the PLUME network
    (John Wiley & Sons, 2011-10-31) Laske, Gabi ; Markee, Amanda ; Orcutt, John A. ; Wolfe, Cecily J. ; Collins, John A. ; Solomon, Sean C. ; Detrick, Robert S. ; Bercovici, David ; Hauri, Erik H.
    We present models of the 3-D shear velocity structure of the lithosphere and asthenosphere beneath the Hawaiian hotspot and surrounding region. The models are derived from long-period Rayleigh-wave phase velocities that were obtained from the analysis of seismic recordings collected during two year-long deployments for the Hawaiian Plume-Lithosphere Undersea Mantle Experiment. For this experiment, broad-band seismic sensors were deployed at nearly 70 seafloor sites as well as 10 sites on the Hawaiian Islands. Our seismic images result from a two-step inversion of path-averaged dispersion curves using the two-station method. The images reveal an asymmetry in shear velocity structure with respect to the island chain, most notably in the lower lithosphere at depths of 60 km and greater, and in the asthenosphere. An elongated, 100-km-wide and 300-km-long low-velocity anomaly reaches to depths of at least 140 km. At depths of 60 km and shallower, the lowest velocities are found near the northern end of the island of Hawaii. No major velocity anomalies are found to the south or southeast of Hawaii, at any depth. The low-velocity anomaly in the asthenosphere is consistent with an excess temperature of 200–250 °C and partial melt at the level of a few percent by volume, if we assume that compositional variations as a result of melt extraction play a minor role. We also image small-scale low-velocity anomalies within the lithosphere that may be associated with the volcanic fields surrounding the Hawaiian Islands.
  • Article
    Shear wave splitting at the Hawaiian hot spot from the PLUME land and ocean bottom seismometer deployments
    (American Geophysical Union, 2012-02-18) Collins, John A. ; Wolfe, Cecily J. ; Laske, Gabi
    We examine upper mantle anisotropy across the Hawaiian Swell by analyzing shear wave splitting of teleseismic SKS waves recorded by the PLUME broadband land and ocean bottom seismometer deployments. Mantle anisotropy beneath the oceans is often attributed to flow-induced lattice-preferred orientation of olivine. Splitting observations may reflect a combination of both fossil lithospheric anisotropy and anisotropy due to present-day asthenospheric flow, and here we address the question whether splitting provides diagnostic information on possible asthenospheric plume flow at Hawaii. We find that the splitting fast directions are coherent and predominantly parallel to the fossil spreading direction, suggesting that shear wave splitting dominantly reflects fossil lithospheric anisotropy. The signature of anisotropy from asthenospheric flow is more subtle, although it could add some perturbation to lithospheric splitting. The measured delay times are typically 1 s or less, although a few stations display larger splitting delays of 1–2 s. The variability in the delay times across the different stations indicates differences in the degree of anisotropy or in the thickness of the anisotropic layer or in the effect of multilayer anisotropy. Regions with smaller splitting times may have experienced processes that modified the lithosphere and partially erased the fossil anisotropy; alternatively, asthenospheric splitting may either constructively add to or destructively subtract from lithospheric splitting to produce the observed variability in delay times.
  • Article
    Power spectra of infragravity waves in a deep ocean
    (John Wiley & Sons, 2013-05-29) Godin, Oleg A. ; Zabotin, Nikolay A. ; Sheehan, Anne F. ; Yang, Zhaohui ; Collins, John A.
    Infragravity waves (IGWs) play an important role in coupling wave processes in the ocean, ice shelves, atmosphere, and the solid Earth. Due to the paucity of experimental data, little quantitative information is available about power spectra of IGWs away from the shore. Here we use continuous, yearlong records of pressure at 28 locations on the seafloor off New Zealand's South Island to investigate spectral and spatial distribution of IGW energy. Dimensional analysis of diffuse IGW fields reveals universal properties of the power spectra observed at different water depths and leads to a simple, predictive model of the IGW spectra. While sources of IGWs off New Zealand are found to have a flat power spectrum, the IGW energy density has a pronounced dependence on frequency and local water depth as a result of the interaction of the waves with varying bathymetry.