Santiago-Mandujano
Fernando
Santiago-Mandujano
Fernando
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-5 2008 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2009-04) Whelan, Sean P. ; Lord, Jeffrey ; Weller, Robert A. ; Lukas, Roger ; Santiago-Mandujano, Fernando ; Snyder, Jefrey ; Lethaby, Paul ; Bahr, Frank B. ; Sabine, Christopher L. ; Smith, Jason C. ; Bouchard, Paul R. ; Galbraith, Nancy R.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first four WHOTS moorings (WHOTS-1 through 4) were deployed in August 2004, July 2005, June 2006, and June 2007, respectively. This report documents recovery of the WHOTS-4 mooring and deployment of the fifth mooring (WHOTS-5). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-5 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-08-08, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 3 and 11 June 2008. Operations began with deployment of the WHOTS-5 mooring on 5 June at approximately 22°46.1'N, 157°54.1'W in 4702 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-4 site. A period of calmer weather was taken advantage of to recover WHOTS-4 on 6 June 2008. The Kilo Moana then returned to the WHOTS-5 mooring for CTD operations and meteorological intercomparisons. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-6 2009 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2010-02) Whelan, Sean P. ; Santiago-Mandujano, Fernando ; Bradley, Frank ; Plueddemann, Albert J. ; Barista, Ludovic ; Ryder, James R. ; Lukas, Roger ; Lethaby, Paul ; Snyder, Jefrey ; Sabine, Christopher L. ; Stanitski, Diane ; Rapp, Anita D. ; Fairall, Christopher W. ; Pezoa, Sergio ; Galbraith, Nancy R. ; Lord, Jeffrey ; Bahr, Frank B.The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaiian Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first WHOTS mooring (WHOTS-1) was deployed in August 2004. Turnaround cruises for successive moorings (WHOTS-2 through WHOTS-5) have typically been in either June or July. This report documents recovery of the WHOTS-5 mooring and deployment of the sixth mooring (WHOTS-6). The moorings utilize Surlyn foam buoys as the surface element and are outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the mooring is outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii (UH). A pCO2 system is installed on the buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. Dr. Frank Bradley, CSIRO, Australia, assisted with meteorological sensor comparisons. A NOAA “Teacher at Sea” and a NOAA “Teacher in the Lab” participated in the cruise. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-09-16, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution in cooperation with UH and NOAA’s Earth System Research Laboratory, Physical Sciences Division (ESRL/PSD). The cruise took place between 9 and 17 July 2009. Operations began with deployment of the WHOTS-6 mooring on 10 July at approximately 22°40.0'N, 157°57.0'W in 4758 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-6 and WHOTS-5 sites. The WHOTS-5 mooring was recovered on 15 July 2009. The Kilo Moana then moved to the HOT central site (22°45.0'N, 158°00.0'W) for CTD casts. This report describes the cruise operations in more detail, as well as some of the in-port operations and pre-cruise buoy preparations.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS): WHOTS-11 2014 mooring Turnaround Cruise Report(Woods Hole Oceanographic Institution, 2015-07) Plueddemann, Albert J. ; Pietro, Benjamin ; Whelan, Sean P. ; Lukas, Roger ; Snyder, Jefrey ; Santiago-Mandujano, Fernando ; Nakahara, Branden ; McCoy, Danny ; Tabata, Ryan ; Tran, Thanh-van ; Lance, Kelly ; Blomquist, ByronThe Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaii Ocean Timeseries (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the tenth WHOTS mooring (WHOTS-10) and deployment of the eleventh mooring (WHOTS-11). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system and ancillary sensors were installed on the buoys in cooperation with Chris Sabine at the Pacific Marine Environmental Laboratory. A set of radiometers were installed in cooperation with Sam Laney at WHOI. The WHOTS mooring turnaround was done on the NOAA ship Hi’ialakai by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 15 and 23 July 2014. Operations began with deployment of the WHOTS-11 mooring on 16 July. This was followed by meteorological intercomparisons and CTDs. Recovery of the WHOTS-10 mooring took place on 20 July. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
-
Technical ReportWHOI Hawaii Ocean Timeseries Station (WHOTS) : WHOTS-14 2017 mooring turnaround cruise report(Woods Hole Oceanographic Institution, 2019-09) Hasbrouck, Emerson ; Weller, Robert A. ; Santiago-Mandujano, Fernando ; Blomquist, Byron ; Maloney, Kelsey ; Snyder, Jefrey ; Clabaugh, Abby ; Adams, Samantha ; Rosburg, Kellen ; King, Andrew ; Natarov, Svetlana ; Howins, Noah ; Hebert, Garrett ; Lukas, RogerThe Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station (WHOTS), located approximately 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the Hawaii Ocean Time-series (HOT) program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring instrumented for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations are used to investigate air–sea interaction processes related to climate variability. This report documents recovery of the thirteenth WHOTS mooring (WHOTS-13) and deployment of the fourteenth mooring (WHOTS-14). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos and Iridium satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with Dr. Roger Lukas of the University of Hawaii. A pCO2 system and ancillary sensors were installed on the buoys in cooperation with Adrienne J. Sutton at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was conducted on the NOAA ship Hi’ialakai (R/V HA). Operations were a joint effort undertaken by the Upper Ocean Processes group (UOP) of the Woods Hole Oceanographic Institution (WHOI), the University of Hawaii’s (UH) Hawaii Ocean Time-series group (HOT), and the able-bodied crew of R/V HA. The cruise took place between 25 July and August 3 2017. Operations began with deployment of the WHOTS-14 mooring on 27 July. This was followed by a period of intercomparison, where meteorological measurements and CTDs were collected at both the W13 and W14 stations. Recovery of the WHOTS-13 mooring took place on 31 July. This report details the in-port operations, pre-cruise buoy preparations, cruise operations and data collected.