Saenger Casey P.

No Thumbnail Available
Last Name
Saenger
First Name
Casey P.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Article
    Interpreting sea surface temperature from strontium/calcium ratios in Montastrea corals : link with growth rate and implications for proxy reconstructions
    (American Geophysical Union, 2008-07-31) Saenger, Casey P. ; Cohen, Anne L. ; Oppo, Delia W. ; Hubbard, Dennis
    We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm a−1. Derived Sr/Ca–sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol mol−1, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca–SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol mol−1) = 11.82 (±0.13) – 0.058 (±0.004) × ext (mm a−1) – 0.092 (±0.005) × SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca–SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca–SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were >5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca–SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.
  • Article
    The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean
    (Elsevier B.V., 2010-08-22) Cronin, Thomas M. ; Hayo, K. ; Thunell, Robert C. ; Dwyer, Gary S. ; Saenger, Casey P. ; Willard, Debra. A.
    A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16–17 °C between 600 and 950 CE (Common Era), centuries before the classic European Medieval Warm Period (950–1100 CE) and peak warming in the Nordic Seas (1000–1400 CE). A series of centennial warm/cool cycles began about 1000 CE with temperature minima of ~ 8 to 9 °C about 1150, 1350, and 1650–1800 CE, and intervening warm periods (14–15 °C) centered at 1200, 1400, 1500 and 1600 CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200 CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800 CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean–atmosphere processes.
  • Article
    Regional climate variability in the western subtropical North Atlantic during the past two millennia
    (American Geophysical Union, 2011-04-21) Saenger, Casey P. ; Came, Rosemarie E. ; Oppo, Delia W. ; Keigwin, Lloyd D. ; Cohen, Anne L.
    Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ∼1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater δ 18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.
  • Article
    Tropical Atlantic climate response to low-latitude and extratropical sea-surface temperature : a Little Ice Age perspective
    (American Geophysical Union, 2009-06-05) Saenger, Casey P. ; Chang, Ping ; Ji, Link ; Oppo, Delia W. ; Cohen, Anne L.
    Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (<1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (<0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
  • Article
    Tropical sea surface temperatures for the past four centuries reconstructed from coral archives
    (John Wiley & Sons, 2015-03-18) Tierney, Jessica E. ; Abram, Nerilie J. ; Anchukaitis, Kevin J. ; Evans, Michael N. ; Giry, Cyril ; Kilbourne, K. Halimeda ; Saenger, Casey P. ; Wu, Henry C. ; Zinke, Jens
    Most annually resolved climate reconstructions of the Common Era are based on terrestrial data, making it a challenge to independently assess how recent climate changes have affected the oceans. Here as part of the Past Global Changes Ocean2K project, we present four regionally calibrated and validated reconstructions of sea surface temperatures in the tropics, based on 57 published and publicly archived marine paleoclimate data sets derived exclusively from tropical coral archives. Validation exercises suggest that our reconstructions are interpretable for much of the past 400 years, depending on the availability of paleoclimate data within, and the reconstruction validation statistics for, each target region. Analysis of the trends in the data suggests that the Indian, western Pacific, and western Atlantic Ocean regions were cooling until modern warming began around the 1830s. The early 1800s were an exceptionally cool period in the Indo-Pacific region, likely due to multiple large tropical volcanic eruptions occurring in the early nineteenth century. Decadal-scale variability is a quasi-persistent feature of all basins. Twentieth century warming associated with greenhouse gas emissions is apparent in the Indian, West Pacific, and western Atlantic Oceans, but we find no evidence that either natural or anthropogenic forcings have altered El Niño–Southern Oscillation-related variance in tropical sea surface temperatures. Our marine-based regional paleoclimate reconstructions serve as benchmarks against which terrestrial reconstructions as well as climate model simulations can be compared and as a basis for studying the processes by which the tropical oceans mediate climate variability and change.
  • Thesis
    Low-latitude western north atlantic climate variability during the past millennium : insights from proxies and models
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2009-09) Saenger, Casey P.
    Estimates of natural climate variability during the past millennium provide a frame of reference in which to assess the significance of recent changes. This thesis investigates new methods of reconstructing low-latitude sea surface temperature (SST) and hydrography, and combines these methods with traditional techniques to improve the present understanding of western North Atlantic climate variability. A new strontium/calcium (Sr/Ca) - SST calibration is derived for Atlantic Montastrea corals. This calibration shows that Montastrea Sr/Ca is a promising SST proxy if the effect of coral growth is considered. Further analyses of coral growth using Computed Axial Tomography (CAT) imaging indicate growth in Siderastrea corals varies inversely with SST on interannual timescales. A 440-year reconstruction of low-latitude western North Atlantic SST based on this relationship suggests the largest cooling of the last few centuries occurred from ~1650-1730 A.D., and was ~1ºC cooler than today. Sporadic multidecadal variability in this record is inconsistent with evidence for a persistent 65-80 year North Atlantic SST oscillation. Volcanic and anthropogenic radiative forcing are identified as important sources of externally-forced SST variability, with the latter accounting for most of the 20th century warming trend. An 1800-year reconstruction of SST and hydrography near the Gulf Stream also suggests SSTs remained within about 1ºC of modern values. This cooling is small relative to other regional proxy records and may reflect the influence of internal oceanic and atmospheric circulation. Simulations with an atmospheric general circulation model (AGCM) indicate that the magnitude of cooling estimated by proxy records is consistent with tropical hydrologic proxy records.