Woosley Ryan J.

No Thumbnail Available
Last Name
Woosley
First Name
Ryan J.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The transpolar drift as a source of riverine and shelf-derived trace elements to the central Arctic Ocean
    (American Geophysical Union, 2020-04-08) Charette, Matthew A. ; Kipp, Lauren ; Jensen, Laramie T. ; Dabrowski, Jessica S. ; Whitmore, Laura M. ; Fitzsimmons, Jessica N. ; Williford, Tatiana ; Ulfsbo, Adam ; Jones, Elizabeth M. ; Bundy, Randelle M. ; Vivancos, Sebastian M. ; Pahnke, Katharina ; John, Seth G. ; Xiang, Yang ; Hatta, Mariko ; Petrova, Mariia V. ; Heimbürger, Lars-Eric ; Bauch, Dorothea ; Newton, Robert ; Pasqualini, Angelica ; Agather, Alison ; Amon, Rainer M. W. ; Anderson, Robert F. ; Andersson, Per S. ; Benner, Ronald ; Bowman, Katlin ; Edwards, R. Lawrence ; Gdaniec, Sandra ; Gerringa, Loes J. A. ; González, Aridane G. ; Granskog, Mats A. ; Haley, Brian ; Hammerschmidt, Chad R. ; Hansell, Dennis A. ; Henderson, Paul B. ; Kadko, David C. ; Kaiser, Karl ; Laan, Patrick ; Lam, Phoebe J. ; Lamborg, Carl H. ; Levier, Martin ; Li, Xianglei ; Margolin, Andrew R. ; Measures, Christopher I. ; Middag, Rob ; Millero, Frank J. ; Moore, Willard S. ; Paffrath, Ronja ; Planquette, Helene ; Rabe, Benjamin ; Reader, Heather ; Rember, Robert ; Rijkenberg, Micha J. A. ; Roy-Barman, Matthieu ; van der Loeff, Michiel Rutgers ; Saito, Mak A. ; Schauer, Ursula ; Schlosser, Peter ; Sherrell, Robert M. ; Shiller, Alan M. ; Slagter, Hans ; Sonke, Jeroen E. ; Stedmon, Colin ; Woosley, Ryan J. ; Valk, Ole ; van Ooijen, Jan ; Zhang, Ruifeng
    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
  • Article
    Uncertainty sources for measurable ocean carbonate chemistry variables
    (Association for the Sciences of Limnology and Oceanography (ASLO), 2023-12-14) Carter, Brendan R. ; Sharp, Jonathan D. ; Dickson, Andrew G. ; Alvarez, Marta ; Fong, Michael B. ; Garcia-Ibanez, Maribel I. ; Woosley, Ryan J. ; Takeshita, Yuichiro ; Barbero, Leticia ; Byrne, Robert H. ; Cai, Wei-Jun ; Chierici, Melissa ; Clegg, Simon L. ; Easley, Regina A. ; Fassbender, Andrea J. ; Fleger, Kalla L. ; Li, Xinyu ; Martin-Mayor, Macarena ; Schockman, Katelyn M. ; Wang, Zhaohui Aleck
    The ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.