Hobbie John E.

No Thumbnail Available
Last Name
Hobbie
First Name
John E.
ORCID

Search Results

Now showing 1 - 12 of 12
  • Article
    Microbes in nature are limited by carbon and energy : the starving-survival lifestyle in soil and consequences for estimating microbial rates
    (Frontiers Media, 2013-11-12) Hobbie, John E. ; Hobbie, Erik A.
    Understanding microbial transformations in soils is important for predicting future carbon sequestration and nutrient cycling. This review questions some methods of assessing one key microbial process, the uptake of labile organic compounds. First, soil microbes have a starving-survival life style of dormancy, arrested activity, and low activity. Yet they are very abundant and remain poised to completely take up all substrates that become available. As a result, dilution assays with the addition of labeled substrates cannot be used. When labeled substrates are transformed into 14CO2, the first part of the biphasic release follows metabolic rules and is not affected by the environment. As a consequence, when identical amounts of isotopically substrates are added to soils from different climate zones, the same percentage of the substrate is respired and the same half-life of the respired 14CO2 from the labeled substrate is estimated. Second, when soils are sampled by a variety of methods from taking 10 cm diameter cores to millimeter-scale dialysis chambers, amino acids (and other organic compounds) appear to be released by the severing of fine roots and mycorrhizal networks as well as from pressing or centrifuging treatments. As a result of disturbance as well as of natural root release, concentrations of individual amino acids of ~10 μM are measured. This contrasts with concentrations of a few nanomolar found in aquatic systems and raises questions about possible differences in the bacterial strategy between aquatic and soil ecosystems. The small size of the hyphae (2–10 μm diameter) and of the fine roots (0.2–2 mm diameter), make it very difficult to sample any volume of soil without introducing artifacts. Third, when micromolar amounts of labeled amino acids are added to soil, some of the isotope enters plant roots. This may be an artifact of the high micromolar concentrations applied.
  • Article
    Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter
    (Ecological Society of America, 2010-07) Rastetter, Edward B. ; Williams, Mathew ; Griffin, Kevin L. ; Kwiatkowski, Bonnie L. ; Tomasky, Gabrielle ; Potosnak, Mark J. ; Stoy, Paul C. ; Shaver, Gaius R. ; Stieglitz, Marc ; Hobbie, John E. ; Kling, George W.
    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.
  • Article
    Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source
    (American Society for Microbiology, 2003-04) Crump, Byron C. ; Kling, George W. ; Bahr, Michele ; Hobbie, John E.
    Seasonal shifts in bacterioplankton community composition in Toolik Lake, a tundra lake on the North Slope of Alaska, were related to shifts in the source (terrestrial versus phytoplankton) and lability of dissolved organic matter (DOM). A shift in community composition, measured by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes, occurred at 4°C in near-surface waters beneath seasonal ice and snow cover in spring. This shift was associated with an annual peak in bacterial productivity ([14C]leucine incorporation) driven by the large influx of labile terrestrial DOM associated with snow meltwater. A second shift occurred after the flux of terrestrial DOM had ended in early summer as ice left the lake and as the phytoplankton community developed. Bacterioplankton communities were composed of persistent populations present throughout the year and transient populations that appeared and disappeared. Most of the transient populations could be divided into those that were advected into the lake with terrestrial DOM in spring and those that grew up from low concentrations during the development of the phytoplankton community in early summer. Sequencing of DNA in DGGE bands demonstrated that most bands represented single ribotypes and that matching bands from different samples represented identical ribotypes. Bacteria were identified as members of globally distributed freshwater phylogenetic clusters within the {alpha}- and ß-Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides group, and the Actinobacteria.
  • Article
    Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site
    (Springer, 2017-01-23) Hobbie, John E. ; Shaver, Gaius R. ; Rastetter, Edward B. ; Cherry, Jessica E. ; Goetz, Scott J. ; Guay, Kevin C. ; Gould, William A. ; Kling, George W.
    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3°C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.
  • Preprint
    Salt marsh sediment diversity : a test of the variability of the rare biosphere among environmental replicates
    ( 2011-12-17) Bowen, Jennifer L. ; Morrison, Hilary G. ; Hobbie, John E. ; Sogin, Mitchell L.
    Much of the phylogenetic diversity in microbial systems arises from rare taxa that comprise the long tail of taxon rank distribution curves. This vast diversity presents a challenge to testing hypotheses about the effects of perturbations on microbial community composition because within site variability of the rare taxa may be sufficiently large that it would require a prohibitive degree of sequencing to discern differences among samples. In this study we used pyrosequencing of 16S rRNA tags to examine the diversity and local scale variability of salt marsh sediment bacteria. Our goal was to determine whether pyrosequencing could produce similar patterns in community composition among replicate environmental samples from the same location. We hypothesized that repeated sampling from the same location would produce different snapshots of the rare community due to incomplete sequencing of the taxonomically rich rare biosphere. The concern was that variation resulting from incomplete sequencing could mask subtle community shifts caused by environmental perturbations. Our data indicate that salt marsh sediments contain a remarkably diverse array of bacterial taxa and, in contrast to our hypothesis, repeated sampling from within the same site produces reliably similar patterns in bacterial community composition, even among rare organisms. These results demonstrate that deep sequencing of 16s tags is well suited to distinguish site-specific similarities and differences among rare taxa and is a valuable tool for hypothesis testing in microbial ecology.
  • Preprint
    Susceptibility of salt marshes to nutrient enrichment and predator removal
    ( 2006-03-15) Deegan, Linda A. ; Bowen, Jennifer L. ; Drake, Deanne C. ; Fleeger, John W. ; Friedrichs, Carl T. ; Galvan, Kari A. ; Hobbie, John E. ; Hopkinson, Charles S. ; Johnson, J. Michael ; Johnson, David S. ; LeMay, Lynsey E. ; Miller, Erin ; Peterson, Bruce J. ; Picard, Christian ; Sheldon, Sallie ; Sutherland, Michael ; Vallino, Joseph J. ; Warren, R. Scott
    The sustainability of coastal ecosystems in the face of widespread environmental change is an issue of pressing concern throughout the world (Emeis et al. 2001). Coastal ecosystems form a dynamic interface between terrestrial and oceanic systems and are one of the most productive ecosystems in the world. Coastal systems probably serve more human uses than any other ecosystem and they have always been valued for their rich bounty of fish and shellfish. Coastal areas are also the sites of the nation’s and the world’s most intense commercial activity and population growth; worldwide, approximately 75% of the human population now lives in coastal regions (Emeis et al. 2001). Over the past three decades nutrient enrichment of coastal and estuarine waters has become the premier issue for both scientists and managers (National Research Council 2000). Our understanding of coastal eutrophication has been developed principally through monitoring of estuaries, with a focus on pelagic or subtidal habitats (National Research Council 2000, Cloern 2001). Because estuarine systems are usually nitrogen limited, NO3- is the most common nutrient responsible for cultural nutrient enrichment (Cloern 2001). Increased nitrogen delivery to pelagic habitats of estuaries produces the classic response of ecosystems to stress (altered primary producers and nutrient cycles and loss of secondary producer species and production; Nixon 1995, Rapport and Whitford 1999, Deegan et al. 2002). Salt marsh ecosystems have been thought of as not susceptible to nitrogen over-loading because early studies found added nitrogen increased marsh grass production (primarily Spartina spp., cordgrass) and concluded that salt marshes can adsorb excess nutrients in plants and salt marsh plant-derived organic matter as peat (Verhoeven et al. 2006). Detritus from Spartina is important in food webs (Deegan et al. 2000) and in creating peat that forms the physical structure of the marsh platform (Freidrichs and Perry 2001). However, the accumulation of peat and inputs of sediments and loss of peat through decomposition and sediment through erosion may be altered under high nutrient regimes and threaten the long-term stability of marsh systems. Nitrogen addition may lead to either net gain or loss of the marsh depending on the balance between increased marsh plant production and increased decomposition. Absolute change in marsh surface elevation is determined by marsh plant species composition, production and allocation to above- and belowground biomass, microbial decomposition, sedimentation, erosion and compaction (Friedrichs and Perry 2001). Levine et al. (1998) suggested that competitive dynamics among plants might be affected by nutrient enrichment, potentially altering relative abundance patterns favoring species with less belowground storage and thus lowering rates of peat formation. When combined with the observation that nutrient additions may also stimulate microbial respiration and decomposition (Morris and Bradley 1999), the net effect on the salt marsh under conditions of chronic nitrogen loading is a critical unknown. Although most research treats nutrient enrichment as a stand-alone stress, it never occurs in isolation from other perturbations. The effect of nutrient loading on species composition (both plants and animals) and the resultant structure and function of wetlands has been largely ignored when considering their ability to adsorb nutrients (Verhoeven et al. 2006). Recent studies suggest the response of estuaries to stress may depend on animal species composition (Silliman et al. 2005). Animal species composition may alter the balance between marsh gain and loss as animals may increase or decrease primary production, decomposition or N recycling (Pennings and Bertness 2001). Failure to understand interactions between nutrient loading and change in species composition may lead to underestimating the impacts of these stresses. The 'bottom up or top down' theory originated from the observation that nutrient availability (bottom up)sets the quantity of primary productivity, while other studies have shown that species composition (top down), particularly of top consumers, has a marked and cascading effect on ecosystems, including controlling species composition and nutrient cycling (Matson and Price 1992, Pace et al. 1999). Most examples of trophic cascades are in aquatic ecosystems with fairly simple, algal grazing pelagic food webs (Strong 1992). The rarity of trophic cascades in terrestrial systems has been attributed to the importance of detrital food webs (Polis 1999). Detritus-based aquatic ecosystems, such as salt marshes, bogs, and swamps, have classically been considered bottom-up or physically controlled ecosystems. Recent experiments, however, suggest that salt marshes may exhibit top-down control at several trophic levels (Silliman and Zeiman. 2001, Silliman and Bertness 2002, Quiñones-Rivera and Fleeger 2005). One abundant, ubiquitous predator, a small (<10 cm total length) killifish (Fundulus heteroclitus, mummichog) has been suggested to control benthic algal through a trophic cascade because they prey on the invertebrates that graze on the benthic algae (Kneib 1997, Sarda et al. 1998). In late summer, killifish are capable of consuming 3-10 times the creek meiofauna production and meiofauna in the absence of predators appear capable of grazing over 60% of the microalgal community per day (Carman et al. 1997). Strong top-down control by grazers is considered a moderating influence on the negative effects of elevated nutrients on algae (Worm et al. 2000). Small-scale nutrient additions and predator community exclusion experiments have demonstrated bottom-up and top-down control of macroinfauna in mudflats associated with salt marsh creeks (Posey et al. 1999, Posey et al. 2002). Together, these observations suggest mummichogs are at the top of a trophic cascade that controls benthic algae (Sarda et al. 1998). Mummichogs are also omnivorous and ingest algae, bulk detritus and the attached microbial community (D’Avanzo and Valiela 1990). As a result, marsh decomposition rates may be limited by top-down controls through trophic pathways or by release from competition with algae for nutrients. Whole-ecosystem experiments have shown that responses to stress are often not predictable from studies of the individual components (Schindler 1998). Developing the information needed to predict the interacting impacts of nutrient loading and species composition change requires experiments with realistic alterations carried out at scales of space and time that include the complexities of real ecosystems. Whole ecosystem manipulation experiments have been used effectively in other ecosystems (Bormann and Likens 1979, Carpenter et al. 1995), but they are rare in coastal research. Experiments in salt marshes have traditionally been less than a few m2. Our understanding of the response of salt marsh plants to nutrient enrichment is from small (<10 m2), plot-level additions where uniform levels of dry inorganic fertilizer (20 to > 1000 g N m-2 y-1) are sprinkled on the marsh surface at low tide. Dry fertilizer additions were usually made every two weeks or monthly and the duration of elevated nutrient levels after these additions was usually not determined. Tidal water is the primary vector for N delivery to coastal marshes, suggesting that dry fertilizer addition to the marsh surface may not be the best basis for determining if Spartina production responds to nutrient enrichment of tidal waters. Similarly, our understanding of top-down controls in salt marshes also relies on small (1 - 4 m2) exclusion experiments that use cages to isolate communities from top consumers. While the design of these cage experiments has improved, there are some remaining drawbacks. For example, it is impossible to selectively exclude single species using cages, and recruitment or size-selective movement into or out of the cages may obscure interpretations. In addition, while these small-scale experiments provide insight into controls on isolated ecosystem processes, they do not allow for interaction among different parts of the ecosystem which may buffer or alter the impacts and are not appropriate for determining the effects of populations of larger more motile animals on whole-ecosystems or the effects of ecosystem changes on populations. For example, interactions may be caused when a motile species alters its distribution among the habitats available to it because of an experimental treatment. Small-scale experiments generally do not allow such events to happen. Complex feedbacks among physical and biological processes can alter accumulation rates and affect marsh elevation relative to sea level rise making extrapolation of small plot level experiments to whole marsh ecosystems problematic. We are conducting an ecosystem-scale, multi-year field experiment including both nutrient and biotic manipulations to coastal salt marsh ecosystems. We are testing, for the first time at the ecosystem level, the hypothesis that nutrient enrichment and species composition change have interactive effects across multiple levels of biological organization and a range of biogeochemical processes. We altered whole salt marsh creek watersheds (~60,000 m2 of saltmarsh) by addition of nutrients (15x ambient) in flooding waters and by a 60% reduction of a key fish species, the mummichog. Small marsh creek watersheds provide an ideal experimental setting because they have the spatial complexity, species composition and processes characteristic of the larger salt marsh ecosystem, which are often hundreds of thousands of m2. Manipulating entire salt marsh creeksheds allowed us to examine effects on large motile animals and the interactive effects of motile species changes on ecosystem processes without cage artifacts. Because our manipulations were done on whole-marsh ecosystems, we are able to evaluate the integrated and interactive effects on all habitats (e.g., water column, tidal creeks and marsh) and on populations. These experiments are similar in many respects to the small watershed experiments carried out in forested catchments. Our nutrient enrichment is novel compared to past studies in two important ways. We added nutrients (N and P) directly to the flooding tidal creek waters to mimic the way in which anthropogenic nutrients reach marsh ecosystems. All previous experimental salt marsh nutrient enrichment studies used a dose-response design with spatially uniform dry fertilizer loading on small plots (<10 m2). Nutrients carried in water will interact and reach parts of the ecosystem differently than dry fertilizer. Our enrichment method also creates a spatial gradient of nutrient loading across the landscape that is proportional to the frequency and depth of inundation in the marsh. Spatial gradients in loading within an ecosystem are typical in real world situations in many terrestrial and aquatic ecosystems. Because of our enrichment method, at any location in the ecosystem, nutrient load will be a function of the nutrient concentration in the water, the frequency and depth of tidal flooding and the reduction of nutrients from the flooding waters by other parts of the ecosystem. Uniform loading misses important aspects of the spatial complexity of ecosystem exposure and response. This work is organized around two questions that are central to understanding the long-term fate of coastal marshes: 1. Does chronic nutrient enrichment via flooding water increase primary production more than it stimulates microbial decomposition? 2. Do top-down controls change the response of the salt marsh ecosystem to nutrient enrichment? Here we present findings on the first 2 years of these experiments including 1) water chemistry, 2) standing stocks and species composition of benthic microalgae, 3) microbial production, 4) species composition and ecophysiology of macrophytes, 5) invertebrates, and 6) nekton. Because even highly eutrophic waters result in nutrient loading that is an order of magnitude less than most plot level experiments, we expected little stimulation of salt marsh vascular plant growth. However, moderate levels of nutrient enrichment in the water column were expected to increase benthic algal biomass and to stimulate bacterial activity and detrital decomposition throughout the ecosystem because of direct uptake of nitrogen from the water column and availability of more high quality organic matter from increased algal production. We predicted nutrient enrichment would increase invertebrate production because of an increase of high quality microalgal and microbial production at the base of the food web. Finally, we predicted that fish reduction would reduce predation on benthic invertebrates resulting in increased abundance of benthic invertebrates that would graze down the benthic algae.
  • Preprint
    Microbial community composition in sediments resists perturbation by nutrient enrichment
    ( 2010-11) Bowen, Jennifer L. ; Ward, Bess B. ; Morrison, Hilary G. ; Hobbie, John E. ; Valiela, Ivan ; Deegan, Linda A. ; Sogin, Mitchell L.
    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
  • Article
    Microbial biogeography along an estuarine salinity gradient : combined influences of bacterial growth and residence time
    (American Society for Microbiology, 2004-03) Crump, Byron C. ; Hopkinson, Charles S. ; Sogin, Mitchell L. ; Hobbie, John E.
    Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.
  • Book
    Limnology of tundra ponds, Barrow, Alaska
    (Dowden, Hutchinson & Ross, 1980) Hobbie, John E.
    This book is a report of investigations of several small ponds on the arctic tundra near Barrow, Alaska. The main study, which ran from 1971 through 1973, was funded from three sources: The National Science Foundation, the State of Alaska through the University of Alaska, and individual companies and members of the petroleum industry. The NSF funding was under the joint sponsorship of the U.S. Arctic Research Program (Division of Polar Programs) and the U.S. International Biological Program (Ecosystem Analysis Program). The U.S. Tundra Biome Program was under the overall direction of Jerry Brown of the U .S. Army Cold Regions Research and Engineering Laboratory and consisted of aquatic and terrestrial sections.
  • Article
    N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra
    (Ecological Society of America, 2006-04) Hobbie, John E. ; Hobbie, Erik A.
    When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae): hyphae take up soil nitrogen, transport it into plant roots, and receive plant sugars in return. In ecosystems, the transfers within the pathway fractionate nitrogen isotopes so that the natural abundance of N-15 in fungi differs from that in their host plants by as much as 12‰. Here we present a new method to quantify carbon and nitrogen fluxes in the symbiosis based on the fractionation against N-15 during transfer of nitrogen from fungi to plant roots. We tested this method, which is based on the mass balance of N-15, with data from arctic Alaska where the nitrogen cycle is well studied. Mycorrhizal fungi provided 61–86% of the nitrogen in plants; plants provided 8–17% of their photosynthetic carbon to the fungi for growth and respiration. This method of analysis avoids the disturbance of the soil–microbe–root relationship caused by collecting samples, mixing the soil, or changing substrate concentrations. This analytical technique also can be applied to other nitrogen-limited ecosystems, such as many temperate and boreal forests, to quantify the importance for terrestrial carbon and nitrogen cycling of nutrient transfers mediated by mycorrhizae at the plant–soil interface.
  • Article
    Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment
    (Ecological Society of America, 2007-06) Crump, Byron C. ; Adams, Heather E. ; Hobbie, John E. ; Kling, George W.
    Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (<10 km) and suggest that geographic distance and connectivity influence the distribution of bacterioplankton communities across a landscape.
  • Article
    Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests : 15N is the key signal
    (NRC Research Press, 2009-02-03) Hobbie, John E. ; Hobbie, Erik A. ; Drossman, Howard ; Conte, Maureen H. ; Weber, John C. ; Shamhart, Julee ; Weinrobe, Melissa
    Symbiotic fungi’s role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north–south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B.S.P., Picea glauca Moench (Voss), and ericaceous plants. Compared with the 15N content of soil, the foliage of nonmycorrhizal plants (Carex and Eriophorum) was unchanged, whereas content of the ectomycorrhizal fungi was very much higher (e.g., Boletaceae, Leccinum and Cortinarius). It is hypothesized that similar processes operate in tundra and boreal forest, both nitrogen-limited ecosystems: (i) mycorrhizal fungi break down soil polymers and take up amino acids or other nitrogen compounds; (ii) mycorrhizal fungi fractionate against 15N during production of transfer compounds; (iii) host plants are accordingly depleted in 15N; and (iv) mycorrhizal fungi are enriched in 15N. Increased N availability for plant roots or decreased light availability to understory plants may have decreased N allocation to mycorrhizal partners and increased δ15N by 3‰–4‰ for southern populations of Vaccinium vitis-idaea L. and Salix. Fungal biomass, measured as ergosterol, correlated strongly with soil organic matter and attained amounts similar to those in temperate forest soils.