Garner
Michael M.
Garner
Michael M.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleDiscrimination between bycatch and other causes of cetacean and pinniped stranding(Inter-Research, 2018-01-31) Bernaldo de Quirós, Yara ; Hartwick, Meghan ; Rotstein, David S. ; Garner, Michael M. ; Bogomolni, Andrea L. ; Greer, William ; Niemeyer, Misty E. ; Early, Greg A. ; Wenzel, Frederick W. ; Moore, Michael J.The challenge of identifying cause of death in discarded bycaught marine mammals stems from a combination of the non-specific nature of the lesions of drowning, the complex physiologic adaptations unique to breath-holding marine mammals, lack of case histories, and the diverse nature of fishing gear. While no pathognomonic lesions are recognized, signs of acute external entanglement, bulging or reddened eyes, recently ingested gastric contents, pulmonary changes, and decompression-associated gas bubbles have been identified in the condition of peracute underwater entrapment (PUE) syndrome in previous studies of marine mammals. We reviewed the gross necropsy and histopathology reports of 36 cetaceans and pinnipeds including 20 directly observed bycaught and 16 live stranded animals that were euthanized between 2005 and 2011 for lesions consistent with PUE. We identified 5 criteria which present at significantly higher rates in bycaught marine mammals: external signs of acute entanglement, red or bulging eyes, recently ingested gastric contents, multi-organ congestion, and disseminated gas bubbles detected grossly during the necropsy and histologically. In contrast, froth in the trachea or primary bronchi, and lung changes (i.e. wet, heavy, froth, edema, congestion, and hemorrhage) were poor indicators of PUE. This is the first study that provides insight into the different published parameters for PUE in bycatch. For regions frequently confronted by stranded marine mammals with non-specific lesions, this could potentially aid in the investigation and quantification of marine fisheries interactions.
-
ArticleDeadly diving? Physiological and behavioural management of decompression stress in diving mammals(Royal Society, 2011-12-21) Hooker, Sascha K. ; Fahlman, Andreas ; Moore, Michael J. ; Aguilar De Soto, Natacha ; Bernaldo de Quiros, Yara ; Brubakk, A. O. ; Costa, Daniel P. ; Costidis, Alexander M. ; Dennison, Sophie ; Falke, K. J. ; Fernandez, Antonio ; Ferrigno, Massimo ; Fitz-Clarke, J. R. ; Garner, Michael M. ; Houser, Dorian S. ; Jepson, Paul D. ; Ketten, Darlene R. ; Kvadsheim, P. H. ; Madsen, Peter T. ; Pollock, N. W. ; Rotstein, David S. ; Rowles, Teresa K. ; Simmons, S. E. ; Van Bonn, William ; Weathersby, P. K. ; Weise, Michael ; Williams, Terrie M. ; Tyack, Peter L.Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.