Lorenzoni
Laura
Lorenzoni
Laura
No Thumbnail Available
Search Results
Now showing
1 - 8 of 8
-
ArticleEditorial: Oceanobs19: An ocean of opportunity(Frontiers Media, 2019-09-06) Speich, Sabrina ; Lee, Tong ; Muller-Karger, Frank E. ; Lorenzoni, Laura ; Pascual, Ananda ; Jin, Di ; Delory, Eric ; Reverdin, Gilles ; Siddorn, John ; Lewis, Marlon R. ; Marba, Nuria ; Buttigieg, Pier Luigi ; Chiba, Sanae ; Manley, Justin ; Kabo-Bah, Amos Tiereyangn ; Desai, Kruti ; Ackerman, AbbyThe OceanObs conferences are held once every 10 years for the scientific, technical, and operational communities involved in the planning, implementation, and use of ocean observing systems. They serve to communicate progress, promote plans, and to define advances in ocean observing in response to societies' needs. Each conference provides a forum for the community to review the state of the ocean observing science and operations, and to define goals and plans to achieve over the next decade.
-
DatasetCARIACO time series individual CTD profiles from B/O Hermano Gines HG93_CARIACO in the CARIACO basin from 1995-2017 (CARIACO project)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-07-17) Muller-Karger, Frank ; Astor, Yrene ; Benitez-Nelson, Claudia ; Buck, Kristen N. ; Fanning, Kent ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Capelo, Juan ; Gutierrez, Javier ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rondon, Anadiuska ; Rueda-Roa, DignaThis collection of data comprises all the Individual CTD profiles from the Cariaco basin taken as part of the CARIACO Ocean Time-Series Program from November 1995 to January 2017. These include all the CTD profiles taken during the monthly hydrographic cruises at the CARIACO station (10.50° N, 64.67° W), as well as other CTD profiles from extra legs of the monthly cruises, and few spatial cruises collected in and around the Cariaco basin. CTD’s Salinity and Oxygen where calibrated with in-situ measurements (see Acquisition Description). This dataset is complimentary to the monthly “CTD Composite Profiles” (https://www.bco-dmo.org/dataset/3092), and many fields are very similar to that data-base. The difference with that dataset, is that here we present all the CTD casts for each cruise, the CTD profiles are single (not composite), and the salinity and oxygen profiles were calibrated with in-situ measurements, but fluorescence was no calibrated. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/773146
-
DatasetZooplankton biomass and species composition and abundance in the southeastern Caribbean Sea (Cariaco Basin) from October 2001 – January 2017 collected by the CARIACO Ocean Time-Series Program(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-08-15) Rojas, Jaimie ; Gonzalez, Luis ; Gutierrez, Javier ; Muller-Karger, Frank ; Astor, Yrene ; Varela, Ramon ; Lorenzoni, Laura ; Rueda-Roa, DignaThe CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. The program studied the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particulate carbon in the Cariaco Basin. This depression, located on the continental shelf of Venezuela, shows marked seasonal and interannual variation in hydrographic properties and primary production (carbon fixation rates by photosynthesis of planktonic algae). Zooplankton sampling was done during each CARIACO time-series cruise from October 2001 to January 2017 (cruises CAR071 - CAR232). Oblique BONGO net tow samples from 200 m to the surface were analyzed to determine biomass (dry weight and ash content) and taxonomic composition. Empty values denote that a specific zooplankton group was not found at that cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3149
-
DatasetTime-series Niskin-bottle sample data from R/V Hermano Gines cruises in the Cariaco Basin from 1995 through 2017 (CARIACO Ocean Time-Series Program)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-07) Muller-Karger, Frank ; Astor, Yrene ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Benitez-Nelson, Claudia ; Buck, Kristen N. ; Fanning, Kent ; Capelo, Juan ; Gutierrez, Javier ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rondon, Anadiuska ; Rueda-Roa, Digna ; Tappa, EricThe CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. During each cruise, a minimum of four hydrocasts were performed to collect a suite of core monthly observations. We conducted separate shallow and deep casts to obtain a better vertical resolution of in-situ Niskin-bottles samples for chemical observations, and for productivity, phytoplankton, and pigment observations. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3093
-
ArticleOcean time series observations of changing marine ecosystems: An era of integration, synthesis, and societal applications(Frontiers Media, 2019-07-12) Benway, Heather M. ; Lorenzoni, Laura ; White, Angelicque E. ; Fiedler, Björn ; Levine, Naomi M. ; Nicholson, David P. ; DeGrandpre, Michael D. ; Sosik, Heidi M. ; Church, Matthew J. ; O'Brien, Todd D. ; Leinen, Margaret S. ; Weller, Robert A. ; Karl, David M. ; Henson, Stephanie A. ; Letelier, Ricardo M.Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.
-
DatasetTime series composite CTD profiles from R/V Hermano Ginés cruises in the Cariaco Basin from 1995 through 2017 (CARIACO Ocean Time-Series Program)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-06-06) Muller-Karger, Frank ; Astor, Yrene ; Benitez-Nelson, Claudia ; Scranton, Mary I. ; Taylor, Gordon T. ; Thunell, Robert C. ; Varela, Ramon ; Capelo, Juan ; Guzman, Laurencia ; Lorenzoni, Laura ; Montes, Enrique ; Rojas, Jaimie ; Rueda-Roa, DignaThe CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. During each cruise, a minimum of four hydrocasts were performed to collect a suite of core monthly observations. We conducted separate shallow and deep casts to obtain a better vertical resolution of in-situ Niskin-bottles samples for chemical observations, and for productivity, phytoplankton, and pigment observations. One CTD composite profile was created for each cruise by stitching together the sections of the different cruise's CTD profiles at the depth interval where water samples were obtained. CTD’s Salinity, Oxygen, and Fluorescence where calibrated with in-situ measurements. The composite CTD profiles dataset is a complement of the hydrographic time series data obtained with the Niskin Bottle Samples (https://www.bco-dmo.org/dataset/3093). The following sections describe the methods used in collecting the core observations at the CARIACO station. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3092
-
Working PaperNSF EarthCube Workshop for Shipboard Ocean Time Series Data Meeting Report(Woods Hole Oceanographic Institution, 2020-02) Benway, Heather M. ; Buck, Justin J. H. ; Fujieki, Lance ; Kinkade, Danie ; Lorenzoni, Laura ; Schildhauer, Mark ; Shepherd, Adam ; White, AngelicquePrior to the OceanObs’19 Meeting, the Ocean Carbon and Biogeochemistry (OCB) Project Office planned and hosted an NSF EarthCube Workshop focused on shipboard ocean time series data (https://www.us-ocb.org/earthcube-workshop-ocean-time-series-data/). Data synthesis and modeling efforts across ocean time series represent important and necessary steps forward in broadening our view of a changing ocean, and maximizing the return on our continued investment in these programs. Despite the scientific insights and technology advances of the past couple of decades, significant barriers remain that hinder important synthesis work across time series. This workshop convened 37 participants, including seagoing oceanographers, data managers, and experts in data science and informatics. The goal of the workshop was to identify key ocean time series data challenges related to access and discoverability, metadata reporting, interoperability across databases, and broadening users; and developing recommendations to address those challenges. The workshop adopted the FAIR (Findable, Accessible, Interoperable, Reusable; Wilkinson et al., 2016) Guiding Principles to frame these issues, and included presentations on existing data models and use of controlled vocabularies, guidelines and frameworks for conducting data synthesis and establishing community best practices, and existing and planned ocean time series data products.
-
ArticleGlobal variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean(National Academy of Sciences, 2020-07-17) Lebrato, Mario ; Garbe-Schonberg, Dieter ; Müller, Marius N. ; Blanco-Ameijeiras, Sonia ; Feely, Richard A. ; Lorenzoni, Laura ; Molinero, Juan-Carlos ; Bremer, Karen ; Jones, Daniel O. B. ; Iglesias-Rodriguez, M. Debora ; Greeley, Dana ; Lamare, Miles D. ; Paulmier, Aurelien ; Graco, Michelle ; Cartes, Joan ; Barcelos e Ramos, Joana ; de Lara, Ana ; Sanchez-Leal, Ricardo ; Jimenez, Paz ; Paparazzo, Flavio E. ; Hartman, Susan ; Westernströer, Ulrike ; Küter, Marie ; Benavides, Roberto ; da Silva, Armindo F. ; Bell, Steven ; Payne, Chris ; Olafsdottir, Solveig R. ; Robinson, Kelly ; Jantunen, Liisa M. ; Korablev, Alexander ; Webster, Richard J. ; Jones, Elizabeth M. ; Gilg, Olivier ; Bailly du Bois, Pascal ; Beldowski, Jacek ; Ashjian, Carin J. ; Yahia, Nejib D. ; Twining, Benjamin S. ; Chen, Xue-Gang ; Tseng, Li-Chun ; Hwang, Jiang-Shiou ; Dahms, Hans-Uwe ; Oschlies, AndreasSeawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.