Maignien
Lois
Maignien
Lois
No Thumbnail Available
Search Results
Now showing
1 - 5 of 5
-
ArticleNew insights into microbial ecology through subtle nucleotide variation(Frontiers Media, 2016-08-24) Eren, A. Murat ; Sogin, Mitchell L. ; Maignien, LoisCharacterizing the community structure of naturally occurring microbes through marker gene amplicons has gained widespread acceptance for profiling microbial populations. The 16S ribosomal RNA (rRNA) gene provides a suitable target for most studies since (1) it meets the criteria for robust markers of evolution, e.g., both conserved and rapidly evolving regions that do not undergo horizontal gene transfer, (2) microbial ecologists have identified widely adopted primers and protocols for generating amplicons for sequencing, (3) analyses of both cultivars and environmental DNA have generated well-curated databases for taxonomic profiling, and (4) bioinformaticians and computational biologists have published comprehensive software tools for interpreting the data and generating publication-ready figures. Since the initial descriptions of high-throughput sequencing of 16S rRNA gene amplicons to survey microbial diversity, we have witnessed an explosion of association-based inferences of interactions between microbes and their environment.
-
ArticleEcological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities(American Society for Microbiology, 2014-01-21) Maignien, Lois ; DeForce, Emelia A. ; Chafee, Meghan E. ; Eren, A. Murat ; Simmons, Sheri L.Bacteria living on the aerial parts of plants (the phyllosphere) are globally abundant and ecologically significant communities and can have significant effects on their plant hosts. Despite their importance, little is known about the ecological processes that drive phyllosphere dynamics. Here, we describe the development of phyllosphere bacterial communities over time on the model plant Arabidopsis thaliana in a controlled greenhouse environment. We used a large number of replicate plants to identify repeatable dynamics in phyllosphere community assembly and reconstructed assembly history by measuring the composition of the airborne community immigrating to plant leaves. We used more than 260,000 sequences from the v5v6 hypervariable region of the 16S rRNA gene to characterize bacterial community structure on 32 plant and 21 air samples over 73 days. We observed strong, reproducible successional dynamics: phyllosphere communities initially mirrored airborne communities and subsequently converged to a distinct community composition. While the presence or absence of particular taxa in the phyllosphere was conserved across replicates, suggesting strong selection for community composition, the relative abundance of these taxa was highly variable and related to the spatial association of individual plants. Our results suggest that stochastic events in early colonization, coupled with dispersal limitation, generated alternate trajectories of bacterial community assembly within the context of deterministic selection for community membership.
-
ArticleOligotyping : differentiating between closely related microbial taxa using 16S rRNA gene data(John Wiley & Sons, 2013-10-23) Eren, A. Murat ; Maignien, Lois ; Sul, Woo Jun ; Murphy, Leslie G. ; Grim, Sharon L. ; Morrison, Hilary G. ; Sogin, Mitchell L.Bacteria comprise the most diverse domain of life on Earth, where they occupy nearly every possible ecological niche and play key roles in biological and chemical processes. Studying the composition and ecology of bacterial ecosystems and understanding their function are of prime importance. High-throughput sequencing technologies enable nearly comprehensive descriptions of bacterial diversity through 16S ribosomal RNA gene amplicons. Analyses of these communities generally rely upon taxonomic assignments through reference data bases or clustering approaches using de facto sequence similarity thresholds to identify operational taxonomic units. However, these methods often fail to resolve ecologically meaningful differences between closely related organisms in complex microbial data sets. In this paper, we describe oligotyping, a novel supervised computational method that allows researchers to investigate the diversity of closely related but distinct bacterial organisms in final operational taxonomic units identified in environmental data sets through 16S ribosomal RNA gene data by the canonical approaches. Our analysis of two data sets from two different environments demonstrates the capacity of oligotyping at discriminating distinct microbial populations of ecological importance. Oligotyping can resolve the distribution of closely related organisms across environments and unveil previously overlooked ecological patterns for microbial communities. The URL http://oligotyping.org offers an open-source software pipeline for oligotyping.
-
ArticleRhizosphere microbial community composition shifts diurnally and in response to natural variation in host clock phenotype(American Society for Microbiology, 2023-05-22) Hubbard, Charley J. ; Harrison, Joshua G. ; McMinn, Robby ; Ponsford, Julian C. Bennett ; Maignien, Lois ; Ewers, Brent ; Weinig, CynthiaPlant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustard Boechera stricta has wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype.
-
ArticleDistribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments(Oxford University Press, 2023-12-22) Trouche, Blandine ; Schauberger, Clemens ; Bouderka, Feriel ; Auguet, Jean-Christophe ; Belser, Caroline ; Poulain, Julie ; Thamdrup, Bo ; Wincker, Patrick ; Arnaud-Haond, Sophie ; Glud, Ronnie N. ; Maignien, LoisAmmonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade’s ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.