Moran S. Bradley

No Thumbnail Available
Last Name
Moran
First Name
S. Bradley
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Intercalibration studies of short-lived thorium-234 in the water column and marine particles
    (Association for the Sciences of Limnology and Oceanography, 2012-09) Maiti, Kanchan ; Buesseler, Ken O. ; Pike, Steven M. ; Benitez-Nelson, Claudia R. ; Cai, Pinghe ; Chen, Weifang ; Cochran, Kirk ; Dai, Minhan ; Dehairs, Frank ; Gasser, Beat ; Kelly, Roger P. ; Masqué, Pere ; Miller, Lisa A. ; Miquel, Juan Carlos ; Moran, S. Bradley ; Morris, Paul J. ; Peine, Florian ; Planchon, Frederic ; Renfro, Alisha A. ; Rutgers van der Loeff, Michiel M. ; Santschi, Peter H. ; Turnewitsch, Robert ; Waples, James T. ; Xu, Chen
    Intercomparision of 234Th measurements in both water and particulate samples was carried out between 15 laboratories worldwide, as a part of GEOTRACES inter-calibration program. Particulate samples from four different stations namely BATS (both shallow and deep) and shelf station (shallow) in Atlantic and SAFE (both shallow and deep) and Santa Barbara station (shallow) in Pacific were used in the effort. Particulate intercalibration results indicate good agreement between all the participating labs with data from all labs falling within the 95% confidence interval around the mean for most instances. Filter type experiments indicate no significant differences in 234Th activities between filter types and pore sizes (0.2-0.8 μm). The only exception are the quartz filters, which are associated with 10% to 20% higher 234Th activities attributed to sorption of dissolved 234Th. Flow rate experiments showed a trend of decreasing 234Th activities with increasing flow rates (2-9 L min-1) for > 51 μm size particles, indicating particle loss during the pumping process. No change in 234Th activities on small particles was observed with increasing flow-rates. 234Th intercalibration results from deep water samples at SAFe station indicate a variability of < 3% amongst labs while dissolved 234Th data from surface water at Santa Barbara Station show a less robust agreement, possibly due to the loss of 234Th from decay and large in-growth corrections as a result of long gap between sample collection and processing.
  • Preprint
    Thorium speciation in seawater
    ( 2005-07) Santschi, Peter H. ; Murray, James W. ; Baskaran, Mark ; Benitez-Nelson, Claudia R. ; Guo, L. D. ; Hung, C.-C. ; Lamborg, Carl H. ; Moran, S. Bradley ; Passow, Uta ; Roy-Barman, Matthieu
    Since the 1960’s, thorium isotopes occupy a special place in the oceanographer’s toolbox as tracers for determining rates and mechanisms of oceanic scavenging, particle dynamics, and carbon fluxes. Due to their unique and constant production rates from soluble parent nuclides of uranium and radium, their disequilibrium can be used to calculate rates and time scales of sinking particles. In addition, by ratio-ing particulate 234Th (as well, in principle, other Thnuclides) to carbon (and other elements), and linking this ratio to the parent-daughter disequilibrium in the water column, it is possible to calculate fluxes of carbon and other elements. Most of these applications are possible with little knowledge of the dissolved chemical properties of thorium, other than its oxidation state (IV) and tendency to strongly sorb to surfaces, i.e., its “particle- or surface-activity”. However, the use of any tracer is hindered by a lack of knowledge of its chemical properties. Recent observations in the variability of carbon to 234Th ratios in different particle types, as well as of associations of Th(IV) with various marine organic biomolecules has led to the need for a review of current knowledge and what future endeavors should be taken to understand the marine chemistry of thorium.
  • Preprint
    Th-230 and Pa-231 on GEOTRACES GA03, the US GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes
    ( 2014-07) Hayes, Christopher T. ; Anderson, Robert F. ; Fleisher, Martin Q. ; Huang, Kuo-Fang ; Robinson, Laura F. ; Lu, Yanbin ; Cheng, Hai ; Edwards, R. Lawrence ; Moran, S. Bradley
    The long-lived uranium decay products 230Th and 231Pa are widely used as quantitative tracers of adsorption to sinking particles (scavenging) in the ocean by exploiting the principles of radioactive disequilibria. Because of their preservation in the Pleistocene sediment record and through largely untested assumptions about their chemical behavior in the water column, the two radionuclides have also been used as proxies for a variety of chemical fluxes in the past ocean. This includes the vertical flux of particulate matter to the seafloor, the lateral flux of insoluble elements to continental margins (boundary scavenging), and the southward flux of water out of the deep North Atlantic. In a section of unprecedented vertical and zonal resolution, the distributions of 230Th and 231Pa across the North Atlantic shed light on the marine cycling of these radionuclides and further inform their use as tracers of chemical flux. Enhanced scavenging intensities are observed in benthic layers of resuspended sediments on the eastern and western margins and in a hydrothermal plume emanating from the Mid-Atlantic Ridge. Boundary scavenging is clearly expressed in the water column along a transect between Mauritania and Cape Verde which is used to quantify a bias in sediment fluxes calculated using 230Th-normalization and to demonstrate enhanced 231Pa removal from the deep North Atlantic by this mechanism. The influence of deep ocean ventilation that leads to the southward export of 231Pa is apparent. The 231Pa/230Th ratio, however, predominantly reflects spatial variability in scavenging intensity, complicating its applicability as a proxy for the Atlantic meridional overturning circulation.
  • Article
    GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be
    (Association for the Sciences of Limnology and Oceanography, 2012-04) Anderson, Robert F. ; Fleisher, Martin Q. ; Robinson, Laura F. ; Edwards, R. Lawrence ; Hoff, John A. ; Moran, S. Bradley ; Rutgers van der Loeff, Michiel M. ; Thomas, Alexander L. ; Roy-Barman, Matthieu ; Francois, Roger
    Nineteen labs representing nine nations participated in the GEOTRACES intercalibration initiative that determined concentrations of 232Th, 230Th, 231Pa, or 10Be in seawater, suspended particles or sediments. Results generally demonstrated good agreement among labs that analyzed marine sediments. Two sets of seawater samples, aliquots of particulate material filtered in situ, and/or aliquots of biogenic sediments were distributed to participating labs. Internal consistency among participating labs improved substantially between the first and second set of seawater samples. Contamination was a serious problem for 232Th. Standard Niskin bottles introduced no detectable contamination, whereas sample containers, reagents, and labware were implicated as sources of contamination. No detectable differences in concentrations of dissolved 232Th, 230Th, or 231Pa were observed among samples of seawater filtered through Nuclepore, Supor, or QMA (quartz) filters with pore diameters ranging between 0.4 and 1.0 μm. Isotope yield monitors equilibrate with dissolved Th in seawater on a time scale of much less than 1 day. Samples of filtered seawater acidified to a pH between 1.7 and 1.8 experienced no detectable loss of dissolved Th or Pa during storage for up to 3 years. The Bermuda Atlantic Time Series station will serve as a GEOTRACES baseline station for future intercalibration of 232Th and 230Th concentrations in seawater. Efforts to improve blanks and standard calibration are ongoing, as is the development of methods to determine concentrations of particulate nuclides, tests of different filtration methods, and an increasing awareness of the need to define protocols for reporting uncertainties.
  • Preprint
    Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean
    ( 2015-01) Hayes, Christopher T. ; Anderson, Robert F. ; Fleisher, Martin Q. ; Vivancos, Sebastian M. ; Lam, Phoebe J. ; Ohnemus, Daniel C. ; Huang, Kuo-Fang ; Robinson, Laura F. ; Lu, Yanbin ; Cheng, Hai ; Edwards, R. Lawrence ; Moran, S. Bradley
    The natural radionuclides 231Pa and 230Th are incorporated into the marine sediment record by scavenging, or adsorption to various particle types, via chemical reactions that are not fully understood. Because these isotopes have potential value in tracing several oceanographic processes, we investigate the nature of scavenging using trans-Atlantic measurements of dissolved (<0.45 μm) and particulate (0.8-51 μm) 231Pa and 230Th, together with major particle composition. We find widespread impact of intense scavenging by authigenic Fe/Mn (hydr)oxides, in the form of hydrothermal particles emanating from the Mid-Atlantic ridge and particles resuspended from reducing conditions near the seafloor off the coast of West Africa. Biogenic opal was not found to be a significant scavenging phase for either element in this sample set, essentially because of its low abundance and small dynamic range at the studied sites. Distribution coefficients in shallow (< 200 m) depths are anomalously low which suggests either the unexpected result of a low scavenging intensity for organic matter or that, in water masses containing abundant organic-rich particles, a greater percentage of radionuclides exist in the colloidal or complexed phase. In addition to particle concentration, the oceanic distribution of particle types likely plays a significant role in the ultimate distribution of sedimentary 230Th and 231Pa.
  • Article
    Thank you to our 2017 peer reviewers
    (John Wiley & Sons, 2018-09-19) Brewer, Peter G. ; Chambers, Don P. ; Hetland, Robert ; Karnauskas, Kristopher B. ; Lowe, Ryan ; Moran, S. Bradley ; Oey, Lie-Yauw ; Pinardi, Nadia ; Proshutinsky, Andrey
    Similar to the construction of physical ships and laboratory buildings, scientific knowledge is built incrementally and requires solid components of data, theory, and methodology at each phase of the “construction.” The peer‐review process provides the necessary “inspection” and the assurance that every step of the construction is solid, particularly in regard to the proper use of the scientific method. The peer‐review process helps improve the published work by providing constructive suggestions and by safeguarding against scientific work that could later be found to be built on shaky foundations. Because no single scientist has intimate knowledge of today's many aspects of the Ocean Sciences, we rely on each other's expertise to serve as unbiased “inspectors” of published articles. Your considerable time and effort, spent reviewing JGR‐Oceans manuscript(s) during 2017, are sincerely appreciated by our editorial board and by the Ocean Science community at large. We thank you for rising to this professional challenge and for your wisdom, commitment, skill, and service.
  • Article
    How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean
    (John Wiley & Sons, 2017-05-05) Loose, Brice ; Kelly, Roger P. ; Bigdeli, Arash ; Williams, W. ; Krishfield, Richard A. ; Rutgers van der Loeff, Michiel M. ; Moran, S. Bradley
    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d−1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d−1 with mean-weighted wind speed of 6.4 m s−1. We show how ice cover changes the mixed-layer radon budget, and yields an “effective gas transfer velocity.” We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.