Dawson
Robin R.
Dawson
Robin R.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleEvidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod(National Academy of Sciences, 2023-04-11) Tagliavento, Mattia ; Davies, Amelia J. ; Bernecker, Miguel ; Staudigel, Philip T. ; Dawson, Robin R. ; Dietzel, Martin ; Götschl, Katja ; Guo, Weifu ; Schulp, Anne S. ; Therrien, François ; Zelenitsky, Darla K. ; Gerdes, Axel ; Müller, Wolfgang ; Fiebig, JensThe dinosaur–bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.
-
ArticleZonal Indian Ocean variability drives millennial-scale precipitation changes in Northern Madagascar(American Geophysical Union, 2023-11-07) Tiger, Benjamin H. ; Burns, Stephen J. ; Dawson, Robin R. ; Scroxton, Nick ; Godfrey, Laurie R. ; Ranivoharimanana, Lovasoa ; Faina, Peterson ; McGee, DavidThe low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U-Th ages date speleothem growth from 27 to 14 ka. δ18O, δ13C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west-east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long-term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial-scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.
-
ArticleZonal control on Holocene precipitation in northwestern Madagascar based on a stalagmite from Anjohibe(Nature Research, 2024-03-06) Dawson, Robin R. ; Burns, Stephen J. ; Tiger, Benjamin H. ; McGee, David ; Faina, Peterson ; Scroxton, Nick ; Godfrey, Laurie R. ; Ranivoharimanana, LovasoaThe Malagasy Summer Monsoon is an important part of the larger Indian Ocean and tropical monsoon region. As the effects of global warming play out, changes to precipitation in Madagascar will have important ramifications for the Malagasy people. To help understand how precipitation responds to climate changes we present a long-term Holocene speleothem record from Anjohibe, part of the Andranoboka cave system in northwestern Madagascar. To date, it is the most complete Holocene record from this region and sheds light on the nature of millennial and centennial precipitation changes in this region. We find that over the Holocene, precipitation in northwestern Madagascar is actually in phase with the Northern Hemisphere Asian monsoon on multi-millennial scales, but that during some shorter centennial-scale events such as the 8.2 ka event, Anjohibe exhibits an antiphase precipitation signal to the Northern Hemisphere. The ultimate driver of precipitation changes across the Holocene does not appear to be the meridional migration of the monsoon. Instead, zonal sea surface temperature gradients in the Indian Ocean seem to play a primary role in precipitation changes in northwestern Madagascar.