Talbot
Helen M.
Talbot
Helen M.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
PreprintHydrologic control of carbon cycling and aged carbon discharge in the Congo River basin( 2016-07) Schefuß, Enno ; Eglinton, Timothy I. ; Spencer-Jones, Charlotte L. ; Rullkötter, Jürgen ; De Pol-Holz, Ricardo ; Talbot, Helen M. ; Grootes, Pieter M. ; Schneider, Ralph R.The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments deposits it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years with apparently increasing ages from the Mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.
-
PreprintAn unusual 17α,21β(H)-bacteriohopanetetrol in Holocene sediments from Ace Lake (Antarctica)( 2008-01) Talbot, Helen M. ; Coolen, Marco J. L. ; Sinninghe Damste, Jaap S.Whilst investigating the intact biohopanoid (bacteriohopanepolyol, BHP) distribution in Holocene sediments from Ace Lake (Antarctica), we have identified the presence of ab- bacteriohopanetetrol in sediments aged up to 9400 years BP. To our knowledge, this is the first time that an intact polyfunctionalised BHP with the “geological” 17α,21β(H) configuration has been identified in a sediment. Previously, this structure has only been observed in species of the nitrogen fixing bacterium Frankia. Its presence here in the sedimentary environment has implications for the interpretation of hopanoid ββ/αβ ratios in the geological record.
-
ArticleAn interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography–mass spectrometry(American Geophysical Union, 2009-03-20) Schouten, Stefan ; Hopmans, Ellen C. ; van der Meer, Jaap ; Mets, Anchelique ; Bard, Edouard ; Bianchi, Thomas S. ; Diefendorf, Aaron ; Escala, Marina ; Freeman, Katharine H. ; Furukawa, Yoshihiro ; Huguet, Carme ; Ingalls, Anitra ; Menot, Guillemette ; Nederbragt, Alexandra J. ; Oba, Masahiro ; Pearson, Ann ; Pearson, Emma J. ; Rosell-Mele, Antoni ; Schaeffer, Philippe ; Shah, Sunita R. ; Shanahan, Timothy M. ; Smith, Richard W. ; Smittenberg, Rienk ; Talbot, Helen M. ; Uchida, Masao ; Van Mooy, Benjamin A. S. ; Yamamoto, Masanobu ; Zhang, Zhaohui ; Sinninghe Damste, Jaap S.Recently, two new proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) were proposed, i.e., the TEX86 proxy for sea surface temperature reconstructions and the BIT index for reconstructing soil organic matter input to the ocean. In this study, fifteen laboratories participated in a round robin study of two sediment extracts with a range of TEX86 and BIT values to test the analytical reproducibility and repeatability in analyzing these proxies. For TEX86 the repeatability, indicating intra-laboratory variation, was 0.028 and 0.017 for the two sediment extracts or ±1–2°C when translated to temperature. The reproducibility, indicating among-laboratory variation, of TEX86 measurements was substantially higher, i.e., 0.050 and 0.067 or ±3–4°C when translated to temperature. The latter values are higher than those obtained in round robin studies of Mg/Ca and U37 k′ paleothermometers, suggesting the need to primarily improve compatibility between labs. The repeatability of BIT measurements for the sediment with substantial amounts of soil organic matter input was relatively small, 0.029, but reproducibility was large, 0.410. This large variance could not be attributed to specific equipment used or a particular data treatment. We suggest that this may be caused by the large difference in the molecular weight in the GDGTs used in the BIT index, i.e., crenarchaeol versus the branched GDGTs. Potentially, this difference gives rise to variable responses in the different mass spectrometers used. Calibration using authentic standards is needed to establish compatibility between labs performing BIT measurements.
-
ArticleAn interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures(John Wiley & Sons, 2013-12-20) Schouten, Stefan ; Hopmans, Ellen C. ; Rosell-Mele, Antoni ; Pearson, Ann ; Adam, Pierre ; Bauersachs, Thorsten ; Bard, Edouard ; Bernasconi, Stefano M. ; Bianchi, Thomas S. ; Brocks, Jochen J. ; Carlson, Laura Truxal ; Castaneda, Isla S. ; Derenne, Sylvie ; Selver, Ayca Dogrul ; Dutta, Koushik ; Eglinton, Timothy I. ; Fosse, Celine ; Galy, Valier ; Grice, Kliti ; Hinrichs, Kai-Uwe ; Huang, Yongsong ; Huguet, Arnaud ; Huguet, Carme ; Hurley, Sarah ; Ingalls, Anitra ; Jia, Guodong ; Keely, Brendan ; Knappy, Chris ; Kondo, Miyuki ; Krishnan, Srinath ; Lincoln, Sara ; Lipp, Julius S. ; Mangelsdorf, Kai ; Martínez-Garcia, Alfredo ; Menot, Guillemette ; Mets, Anchelique ; Mollenhauer, Gesine ; Ohkouchi, Naohiko ; Ossebaar, Jort ; Pagani, Mark ; Pancost, Richard D. ; Pearson, Emma J. ; Peterse, Francien ; Reichart, Gert-Jan ; Schaeffer, Philippe ; Schmitt, Gaby ; Schwark, Lorenz ; Shah, Sunita R. ; Smith, Richard W. ; Smittenberg, Rienk H. ; Summons, Roger E. ; Takano, Yoshinori ; Talbot, Helen M. ; Taylor, Kyle W. R. ; Tarozo, Rafael ; Uchida, Masao ; van Dongen, Bart E. ; Van Mooy, Benjamin A. S. ; Wang, Jinxiang ; Warren, Courtney ; Weijers, Johan W. H. ; Werne, Josef P. ; Woltering, Martijn ; Xie, Shucheng ; Yamamoto, Masanobu ; Yang, Huan ; Zhang, Chuanlun L. ; Zhang, Yige ; Zhao, Meixun ; Sinninghe Damste, Jaap S.Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3–4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0–1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the “true” (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.