Vijayan
Mathilakath M.
Vijayan
Mathilakath M.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleBisphenol A in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout(Public Library of Science, 2010-05-20) Aluru, Neelakanteswar ; Leatherland, John F. ; Vijayan, Mathilakath M.Bisphenol A (BPA), used in the manufacture of plastics, is ubiquitously distributed in the aquatic environment. However, the effect of maternal transfer of these xenobiotics on embryonic development and growth is poorly understood in fish. We tested the hypothesis that BPA in eggs, mimicking maternal transfer, impact development, growth and stress performance in juveniles of rainbow trout (Oncorhynchus mykiss). Trout oocytes were exposed to 0, 30 and 100 µg.mL−1 BPA for 3 h in ovarian fluid, followed by fertilization. The embryos were maintained in clean water and sampled temporally over 156-days post-fertilization (dpf), and juveniles were sampled at 400-dpf. The egg BPA levels declined steadily after exposure and were undetectable after 21- dpf. Oocyte exposure to BPA led to a delay in hatching and yolk absorption and a consistently lower body mass over 152-dpf. The growth impairment, especially in the high BPA group, correlated with higher growth hormone (GH) content and lower GH receptors gene expression. Also, mRNA abundances of insulin-like growth factors (IGF-1 and IGF-2) and their receptors were suppressed in the BPA treated groups. The juvenile fish grown from the BPA-enriched eggs had lower body mass and showed perturbations in plasma cortisol and glucose response to an acute stressor. BPA accumulation in eggs, prior to fertilization, leads to hatching delays, growth suppression and altered stress response in juvenile trout. The somatotropic axis appears to be a key target for BPA impact during early embryogenesis, leading to long term growth and stress performance defects in fish.
-
PreprintTide-related changes in mRNA abundance of aromatases and estrogen receptors in the ovary and brain of the threespot wrasse Halichoeres trimaculatus( 2018-05) Oh, Dae-Ju ; Hur, Sung-Pyo ; Bouchekioua, Selma ; Takeuchi, Yuki ; Udagawa, Shingo ; Aluru, Neelakanteswar ; Park, Yong-Ju ; Park, Ji-Gweon ; Kim, Se-Jae ; Moon, Thomas W. ; Vijayan, Mathilakath M. ; Takemura, AkihiroThe threespot wrasse (Halichoeres trimaculatus; Family Labridae) is a common coral reef species of the Indo-Pacific Ocean. Given that this species spawns daily at high tide (HT), we hypothesized that endocrine changes in relation to gonadal development are synchronized with the tidal cycle. To test this, we examined the transcript abundance of two cytochrome P450 aromatases (cyp19a and cyp19b) and two estrogen receptors (er and er) in the ovary and brain of this species in response to tidal change. When fish were collected around four tidal points [low tide (LT), flood tide (FT), high tide (HT), and ebb tide (ET)], gonadosomatic index and oocyte diameter increased around HT and FT, respectively. Ovulatory follicles were observed in ovaries around HT. Real-time quantitative polymerase-chain reaction revealed that mRNA abundance of cyp19a and er, but not er, in the ovary increased around ET and HT, respectively. On the other hand, mRNA levels of cyp19b in the forebrain were significantly higher around FT. Increases of er and er mRNA abundance around FT were observed in all areas of the brain and the midbrain, respectively. The changes in mRNA abundance of key genes involved in reproduction at specific tidal cycles, along with the development of the vitellogenic oocytes in the ovary, support our hypothesis that synchronization of endocrine changes to the tidal periodicity plays a role in the gonadal development of this species. We hypothesize that conversion of testosterone to E2 in the brain may be associated with the spawning behavior given that the wrasse exhibits group spawning with a territory-holding male around HT.
-
ArticleBisphenol A in eggs causes development-specific liver molecular reprogramming in two generations of rainbow trout(Nature Publishing Group, 2017-10-26) Sadoul, Bastien ; Birceanu, Oana ; Aluru, Neelakanteswar ; Thomas, Jith K. ; Vijayan, Mathilakath M.Bisphenol A (BPA) is widely used in the manufacture of plastics and epoxy resins and is prevalent in the aquatic environment. BPA disrupts endocrine pathways in fish, but the long-term developmental implications are unknown. We demonstrate that BPA deposition in the eggs of rainbow trout (Oncorhynchus mykiss), an ecologically and economically important species of fish, reprograms liver metabolism in the offspring and alters the developmental growth trajectory in two generations. Specifically, BPA reduces growth during early development, followed by a catch-up growth post-juveniles. More importantly, we observed a developmental shift in the liver transcriptome, including an increased propensity for protein breakdown during early life stages to lipid and cholesterol synthesis post- juveniles. The liver molecular responses corresponded with the transient growth phenotypes observed in the F1 generation, and this was also evident in the F2 generation. Altogether, maternal and/or ancestral embryonic exposure to BPA affects liver metabolism leading to development-distinct effects on growth, underscoring the need for novel risk assessment strategies for this chemical in the aquatic environment. This is particularly applicable to migratory species, such as salmon, where distinct temporal changes in growth and physiology during development are critical for their spawning success.