Willard
Debra A.
Willard
Debra A.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleThe Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean(Elsevier B.V., 2010-08-22) Cronin, Thomas M. ; Hayo, K. ; Thunell, Robert C. ; Dwyer, Gary S. ; Saenger, Casey P. ; Willard, Debra. A.A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16–17 °C between 600 and 950 CE (Common Era), centuries before the classic European Medieval Warm Period (950–1100 CE) and peak warming in the Nordic Seas (1000–1400 CE). A series of centennial warm/cool cycles began about 1000 CE with temperature minima of ~ 8 to 9 °C about 1150, 1350, and 1650–1800 CE, and intervening warm periods (14–15 °C) centered at 1200, 1400, 1500 and 1600 CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200 CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800 CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean–atmosphere processes.
-
ArticleRapid sea level rise and ice sheet response to 8,200-year climate event(American Geophysical Union, 2007-10-24) Cronin, Thomas M. ; Vogt, P. R. ; Willard, Debra A. ; Thunell, Robert C. ; Halka, J. ; Berke, M. ; Pohlman, John W.The largest abrupt climatic reversal of the Holocene interglacial, the cooling event 8.6–8.2 thousand years ago (ka), was probably caused by catastrophic release of glacial Lake Agassiz-Ojibway, which slowed Atlantic meridional overturning circulation (AMOC) and cooled global climate. Geophysical surveys and sediment cores from Chesapeake Bay reveal the pattern of sea level rise during this event. Sea level rose ~14 m between 9.5 to 7.5 ka, a pattern consistent with coral records and the ICE-5G glacio-isostatic adjustment model. There were two distinct periods at ~8.9–8.8 and ~8.2–7.6 ka when Chesapeake marshes were drown as sea level rose rapidly at least ~12 mm yr−1. The latter event occurred after the 8.6–8.2 ka cooling event, coincided with extreme warming and vigorous AMOC centered on 7.9 ka, and may have been due to Antarctic Ice Sheet decay.
-
ArticleThe mighty Susquehanna-extreme floods in Eastern North America during the past two millennia(American Geophysical Union, 2019-02-19) Toomey, Michael R. ; Cantwell, Meagan ; Colman, Steven ; Cronin, Thomas M. ; Donnelly, Jeffrey P. ; Giosan, Liviu ; Heil, Clifford W. ; Korty, Robert ; Marot, Marci ; Willard, D. A.The hazards posed by infrequent major floods to communities along the Susquehanna River and the ecological health of Chesapeake Bay remain largely unconstrained due to the short length of streamgage records. Here we develop a history of high‐flow events on the Susquehanna River during the late Holocene from flood deposits contained in MD99‐2209, a sediment core recovered in 26 m of water from Chesapeake Bay near Annapolis, Maryland, United States. We identify coarse‐grained deposits left by Hurricane Agnes (1972) and the Great Flood of 1936, as well as during three intervals that predate instrumental flood records (~1800–1500, 1300–1100, and 400–0 CE). Comparison to sedimentary proxy data (pollen and ostracode Mg/Ca ratios) from the same core site indicates that prehistoric flooding on the Susquehanna often accompanied cooler‐than‐usual winter/spring temperatures near Chesapeake Bay—typical of negative phases of the North Atlantic Oscillation and conditions thought to foster hurricane landfalls along the East Coast.