Souhaut
Marc
Souhaut
Marc
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleThe Ra-226–Ba relationship in the North Atlantic during GEOTRACES-GA01(Copernicus Publications on behalf of the European Geosciences Union, 2018-05-17) Le Roy, Emilie ; Sanial, Virginie ; Charette, Matthew A. ; van Beek, Pieter ; Lacan, Francois ; Jacquet, Stéphanie H. M. ; Henderson, Paul B. ; Souhaut, Marc ; García-Ibáñez, Maribel I. ; Jeandel, Catherine ; Perez, Fiz F. ; Sarthou, GeraldineWe report detailed sections of radium-226 (226Ra, T1∕2 = 1602 years) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal–Greenland–Canada) in the framework of the international GEOTRACES program (GA01 section – GEOVIDE project, May–July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, a pattern that may reflect their similar chemical behavior. Because 226Ra and Ba have been widely used as tracers of water masses and ocean mixing, we investigated their behavior more thoroughly in this crucial region for thermohaline circulation, taking advantage of the contrasting biogeochemical patterns existing along the GA01 section. We used an optimum multiparameter (OMP) analysis to distinguish the relative importance of physical transport (water mass mixing) from nonconservative processes (sedimentary, river or hydrothermal inputs, uptake by particles and dissolved–particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. Results show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58 and 65 % of the samples, respectively, notably at intermediate depth, away from the ocean interfaces. 226Ra and Ba can thus be considered conservative tracers of water mass transport in the ocean interior on the space scales considered here, namely, on the order of a few thousand kilometers. However, regions in which 226Ra and Ba displayed nonconservative behavior and in some cases decoupled behaviors were also identified, mostly at the ocean boundaries (seafloor, continental margins and surface waters). Elevated 226Ra and Ba concentrations found in deepwater in the West European Basin suggest that lower Northeast Atlantic Deep Water (NEADWl) accumulates 226Ra and Ba from sediment diffusion and/or particle dissolution during transport. In the upper 1500 m of the West European Basin, deficiencies in 226Ra and Ba are likely explained by their incorporation in planktonic calcareous and siliceous shells, or in barite (BaSO4) by substitution or adsorption mechanisms. Finally, because Ba and 226Ra display different source terms (mostly deep-sea sediments for 226Ra and rivers for Ba), strong decoupling between 226Ra and Ba were observed at the land–ocean boundaries. This is especially true in the shallow stations near the coasts of Greenland and Newfoundland where high 226Ra ∕ Ba ratios at depth reflect the diffusion of 226Ra from sediment and low 226Ra ∕ Ba ratios in the upper water column reflect the input of Ba associated with meteoric waters.
-
ArticleNutrient fluxes associated with submarine groundwater discharge from karstic coastal aquifers (Côte Bleue, French Mediterranean coastline)(Frontiers Media, 2020-02-18) Bejannin, Simon ; Tamborski, Joseph ; van Beek, Pieter ; Souhaut, Marc ; Stieglitz, Thomas ; Radakovitch, Olivier ; Claude, Christelle ; Conan, Pascal ; Pujo-Pay, Mireille ; Crispi, Olivier ; Le Roy, Emilie ; Estournel, ClaudeDetermination of submarine groundwater discharge (SGD) from karstic coastal aquifers is important to constrain hydrological and biogeochemical cycles. However, SGD quantification using commonly employed geochemical methods can be difficult to constrain under the presence of large riverine inputs, and is further complicated by the determination of the karstic groundwater endmember. Here, we investigated a coastal region where groundwater discharges from a karstic aquifer system using airborne thermal infrared mapping and geochemical sampling conducted along offshore transects. We report radium data (223Ra, 224Ra, 228Ra) that we used to derive fluxes (water, nutrients) associated with terrestrial groundwater discharge and/or seawater circulation through the nearshore permeable sediments and coastal aquifer. Field work was conducted at different periods of the year to study the temporal variability of the chemical fluxes. Offshore transects of 223Ra and 224Ra were used to derive horizontal eddy diffusivity coefficients that were subsequently combined with surface water nutrient gradients (NO2− + NO3−, DSi) to determine the net nutrient fluxes from SGD. The estimated DSi and (NO2− + NO3−) fluxes are 6.2 ± 5.0 *103 and 4.0 ± 2.0 *103 mol d−1 per km of coastline, respectively. We attempted to further constrain these SGD fluxes by combining horizontal eddy diffusivity and 228Ra gradients. However, SGD endmember selection in this area (terrestrial groundwater discharge vs. porewater) adds further uncertainty to the flux calculation and thus prevented us from calculating a reliable flux using this latter method. Additionally, the relatively long half-life of 228Ra (5.75 y) makes it sensitive to specific circulation patterns in this coastal region, including sporadic intrusions of Rhône river waters that impact both the 228Ra and nutrient surface water distributions. We show that SGD nutrient fluxes locally reach up to 20 times the nutrient fluxes from a small river (Huveaune River). On a regional scale, DSi fluxes driven by SGD vary between 0.1 and 1.4% of the DSi inputs of the Rhône River, while the (NO2− + NO3−) fluxes driven by SGD on this 22 km long coastline are between 0.1 and 0.3% of the Rhône River inputs, the largest river that discharges into the Mediterranean Sea. Interestingly, the nutrient fluxes reported here are similar in magnitude compared with the fluxes quantified along the sandy beach of La Franqui, in the western Gulf of Lions (Tamborski et al., 2018), despite the different lithology of the two areas (karst systems vs. unconsolidated sediment).