Leavitt Dale F.

No Thumbnail Available
Last Name
Leavitt
First Name
Dale F.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Environmental distribution and persistence of Quahog Parasite Unknown (QPX)
    (Inter-Research, 2008-09-24) Gast, Rebecca J. ; Moran, Dawn M. ; Audemard, Corinne ; Lyons, M. Maille ; DeFaveri, Jacquelin ; Reece, Kimberly S. ; Leavitt, Dale F. ; Smolowitz, Roxanna M.
    Quahog Parasite Unknown (QPX) is the cause of mass mortality events of hard clams Mercenaria mercenaria from Virginia, USA, to New Brunswick, Canada. Aquaculture areas in Massachusetts, USA, have been particularly hard hit. The parasite has been shown to be a directly infective organism, but it is unclear whether it could exist or persist outside of its clam host. We used molecular methods to examine water, sediment, seaweeds, seagrass and various invertebrates for the presence of QPX. Sites in Virginia and Massachusetts were selected based upon the incidence of QPX-induced clam die-offs, and they were monitored seasonally. QPX was detectable in almost all of our different sample types from Massachusetts, indicating that the parasite was widely distributed in the environment. Significantly more samples from Massachusetts were positive than from Virginia, and there was a seasonal pattern to the types of samples positive from Massachusetts. The data suggest that, although it may be difficult to completely eradicate QPX from the environment, it may be possible to keep the incidence of disease under control through good plot husbandry and the removal of infected and dying clams.
  • Article
    Chemical impacts in fish and shellfish from Cape Cod and Massachusetts Bays
    (Barnstable County Department of Health and Environment, 1998) Moore, Michael J. ; Smolowitz, Roxanna M. ; Leavitt, Dale F. ; Stegeman, John J.
    Mununichogs, soft shell clams, and blue mussels from some or all of 10 sites in Boston Harbor and Massachusetts and Cape Cod Bays were examined histologically: a suite of pathological changes previously known to be associated with chemical contamination were found in animals from the more contaminated sites. In particular, liver tumors were evident in 14% of the adult mununichogs from the Island End River, a tributary of the Mystic River in Boston Harbor. Additionally, a number of pathologies previously shown to be associated with chemical exposure were seen in the two bivalve species at a number of contaminated sites. Induction of cytochrome P45() IA (CYPIA) was also seen in muntntichogs from the more contaminated sites: CYPIA induction is a biochemical change associated with exposure to dioxin and other planar halogenated and aromatic hydrocarbons. These findings suggest that there are measurable biochemical and pathological changes in intertidal fish and shellfish from the more contaminated parts of the Massachusetts Bays system. These types of changes were less evident in the two reference sites in Cape Cod Bay.
  • Article
    DGGE-based detection method for Quahog Parasite Unknown (QPX)
    (Inter-Research, 2006-06-12) Gast, Rebecca J. ; Cushman, E. ; Moran, Dawn M. ; Uhlinger, Kevin R. ; Leavitt, Dale F. ; Smolowitz, Roxanna M.
    Quahog Parasite Unknown (QPX) is a significant cause of hard clam Mercenaria mercenaria mortality along the northeast coast of the United States. It infects both wild and cultured clams, often annually in plots that are heavily farmed. Subclinically infected clams can be identified by histological examination of the mantle tissue, but there is currently no method available to monitor the presence of QPX in the environment. Here, we report on a polymerase chain reaction (PCR)-based method that will facilitate the detection of QPX in natural samples and seed clams. With our method, between 10 and 100 QPX cells can be detected in 1 l of water, 1 g of sediment and 100 mg of clam tissue. Denaturing gradient gel electrophoresis (DGGE) is used to establish whether the PCR products are the same as those in the control QPX culture. We used the method to screen 100 seed clams of 15 mm, and found that 10 to 12% of the clams were positive for the presence of the QPX organism. This method represents a reliable and sensitive procedure for screening both environmental samples and potentially contaminated small clams.
  • Article
    Influence of host genetic origin and geographic location on QPX disease in northern quahogs (=hard clams), Mercenaria mercenaria
    (National Shellfisheries Association, 2007-04) Ragone Calvo, Lisa M. ; Ford, Susan E. ; Kraeuter, John N. ; Leavitt, Dale F. ; Smolowitz, Roxanna M. ; Burreson, Eugene M.
    QPX (Quahog Parasite Unknown) a protistan pathogen of northern quahogs (=hard clams), Mercenaria mercenaria, has caused disease outbreaks in maritime Canada, and in Massachusetts, New York, New Jersey, and Virginia, USA. Although epizootics have occurred in wild hard clam populations, the parasite has most seriously affected cultured hard clams, suggesting that aquaculture practices may promote or predispose clams to the disease. In this investigation the influence of clam genetic origin and the geographic location at where they are grown on QPX disease susceptibility was examined in a common garden experiment. Aquaculture stocks were acquired from hatcheries in Massachusetts, New Jersey, Virginia, South Carolina, and Florida and spawned at a single hatchery in Virginia. All stocks were originally, although not exclusively, derived from wild hard clam populations from each state. The seed clams were deployed at two sites, New Jersey and Virginia, and evaluated during the subsequent 2.5 y for growth, survival, and QPX disease. At both sites, South Carolina- and Florida-derived clam stocks exhibited significantly higher QPX prevalence and lower survival than New Jersey and Massachusetts clam stocks. Levels in the Virginia stock were intermediate. In Virginia, mortality at the termination of the experiment was 78%, 52%, 36%, 33%, and 20% in the Florida, South Carolina, Virginia, Massachusetts, and New Jersey hard clam stocks, respectively. Mortality was significantly correlated with QPX prevalence. Maximum QPX prevalence in the South Carolina and Florida stocks ranged from 19% to 21% and 27% to 29%, respectively, whereas in the Virginia, New Jersey, and Massachusetts stocks prevalence was 10% or less. Similar trends were observed in New Jersey where mortality at the termination of the experiment was estimated to be 53%, 40%, 20%, 6%, and 4% in the Florida, South Carolina, Virginia, Massachusetts, and New Jersey clam stocks, respectively. QPX prevalence peaked at 18% in the Florida stock, 38% in the South Carolina, 18% in the Virginia, and 5% in the New Jersey and Massachusetts stocks. These results suggest that host genotype is an important determinant in susceptibility to QPX disease. As such, hard clam culturist should consider the genetic origin of clam seed stocks an important component of their QPX disease avoidance/management strategies.