Keller Nicole S.

No Thumbnail Available
Last Name
First Name
Nicole S.

Search Results

Now showing 1 - 2 of 2
  • Article
    Submarine back-arc lava with arc signature : Fonualei Spreading Center, northeast Lau Basin, Tonga
    (American Geophysical Union, 2008-08-30) Keller, Nicole S. ; Arculus, Richard J. ; Hermann, Jörg ; Richards, Simon
    We present major, volatile, and trace elements for quenched glasses from the Fonualei Spreading Center, a nascent spreading system situated very close to the Tofua Volcanic Arc (20 km at the closest), in the northeast Lau Basin. The glasses are basalts and basaltic andesites and are inferred to have originated from a relatively hot and depleted mantle wedge. The Fonualei Spreading Center shows island arc basalt (IAB) affinities, indistinguishable from the Tofua Arc. Within the Fonualei Spreading Center no geochemical trends can be seen with depth to the slab and/or distance to the arc, despite a difference in depth to the slab of >50 km. Therefore we infer that all the subduction-related magmatism is captured by the back arc as the adjacent arc is shut off. There is a sharp contrast between the main spreading area of the Fonualei Spreading Center (FSC) and its northernmost termination, the Mangatolu Triple Junction (MTJ). The MTJ samples are characteristic back-arc basin basalts (BABB). We propose that the MTJ and FSC have different mantle sources, reflecting different mantle origins and/or different melting processes. We also document a decrease in mantle depletion from the south of the FSC to the MTJ, which is the opposite to what has been documented for the rest of the Lau Basin where depletion generally increases from south to north. We attribute this reverse trend to the influx of less depleted mantle through the tear between the Australian and the Pacific plates, at the northern boundary of the Lau Basin.
  • Preprint
    XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts
    ( 2009-08-14) Evans, K. A. ; St O’Neill, H. ; Mavrogenes, J. A. ; Keller, Nicole S. ; Jang, L-Y. ; Lee, J-F.
    S K edge XANES and Mn, W and Ni XANES and EXAFS spectra of silicate glasses synthesised at 1400° C and 1 bar with compositions in the CaO-MgO-Al2O3-SiO2-S plus MnO, NiO, or WO3 systems were used to investigate sulphur speciation in silicate glasses. S K-edge spectra comprised a composite peak with an edge between 2470 and 2471.4 eV, which was attributed to S2-, and a peak of variable height with an edge at 2480.2 to 2480.8 eV, which is consistent with the presence of S6+. The latter peak was attributed to sample oxidation during sample storage. W-rich samples produced an additional lower energy peak at 2469.8 eV that is tentatively attributed to the existence of S 3p orbitals hybridised with the W 5d states. Deconvolution of the composite peak reveals that the composite peak for Mn-bearing samples fits well to a model that combines three Lorentzians at 2473.1, 2474.9 and 2476.2 eV with an arctan edge step. The composite peak for W-bearing samples fits well to the same combination plus an additional Lorentzian at 2469.8 eV. The ratio of the proportions of the signal accounted for by peaks at 2473.1eV and 2476.2eV correlates with Mn:Ca molar ratios, but not with W:Ca ratios. Spectra from Ni-bearing samples were qualitatively similar but S levels were too low to allow robust quantification of peak components. Some part of the signal accounted for by the 2473.1 eV peak was therefore taken to record the formation of Mn-S melt species, while the 2469.8 peak is interpreted to record the formation of W-S melt species. The 2474.9 eV and 2476.2 eV peaks were taken to be dominated by Ca-S and Mg-S interactions. However, a 1:1 relationship between peak components and specific energy transitions is not proposed. This interpretation is consistent with known features of the lower parts of the conduction band in monosulphide minerals and indicates a similarity between sulphur species in the melts and the monosulphides. S XANES spectra cannot be reproduced by a combination of the spectra of the component element monosulphides. Mn-, W- and Ni- XANES and EXAFS for synthetic glasses without sulphide exsolution did not show any sensitivity to the presence of sulphur, which is unsurprising as S:O ratios were sufficiently low that metals would be mostly co-ordinated by O. Mn EXAFS spectra were consistent with divalent Mn in 5 co-ordinated Mn-O melt species. W spectra were consistent with tetrahedrally co-ordinated hexavalent W, most likely in scheelite-like melt species, and Ni spectra were consistent with [4] co-ordinated divalent Ni. These results indicate lower coordinations for bothWand Ni than those inferred by some previous workers. Cation coordination may reflect the proportion of non-bridging oxygens, which is lower in the Ca-rich and Al-poor samples investigated here than for previous studies.