Stattegger
Karl
Stattegger
Karl
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleSouth Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea(John Wiley & Sons, 2015-02-24) Ali, Sajid ; Hathorne, Ed C. ; Frank, Martin ; Gebregiorgis, Daniel ; Stattegger, Karl ; Stumpf, Roland ; Kutterolf, Steffen ; Johnson, Joel E. ; Giosan, LiviuThe Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial-interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay-size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval εNd values changed little, generally oscillating between −7.3 and −5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo-Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite-poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short-term northern Atlantic climate variability on millennial time scales.
-
ArticleUnraveling Environmental Forces Shaping Surface Sediment Geochemical “Isodrapes” in the East Asian Marginal Seas(American Geophysical Union, 2024-04-04) Paradis, Sarah ; Diesing, Markus ; Gies, Hannah ; Haghipour, Negar ; Narman, Lena ; Magill, Clayton ; Wagner, Thomas ; Galy, Valier V. ; Hou, Pengfei ; Zhao, Meixun ; Kim, Jung-Hyun ; Shin, Kyung-Hoon ; Lin, Baozhi ; Liu, Zhifei ; Wiesner, Martin G. ; Stattegger, Karl ; Chen, Jianfang ; Zhang, Jingjing ; Eglinton, Timothy I.As major sites of carbon burial and remineralization, continental margins are key components of the global carbon cycle. However, heterogeneous sources of organic matter (OM) and depositional environments lead to complex spatial patterns in sedimentary organic carbon (OC) content and composition. To better constrain the processes that control OM cycling, we focus on the East Asian marginal seas as a model system, where we compiled extensive data on the OC content, bulk isotopic composition (δ13C and Δ14C), total nitrogen, and mineral surface area of surficial sediments from previous studies and new measurements. We developed a spatial machine learning modeling framework to predict the spatial distribution of these parameters and identify regions where sediments with similar geochemical signatures drape the seafloor (i.e., “isodrapes”). We demonstrate that both provenance (44%–77%) and hydrodynamic processes (22%–53%) govern the fate of OM in this margin. Hydrodynamic processes can either promote the degradation of OM in mobile mud-belts or preserve it in stable mud-deposits. The distinct isotopic composition of OC sources from marine productivity and individual rivers regulates the age and reactivity of OM deposited on the sea-floor. The East Asian marginal seas can be separated into three main isodrapes: hydrodynamically energetic shelves with coarser-grained sediment depleted in OC, OM-enriched mud deposits, and a deep basin with fine-grained sediments and aged OC affected by long oxygen exposure times and petrogenic input from rivers. This study confirms that both hydrodynamic processes and provenance should be accounted for to understand the fate of OC in continental margins.