Murton Bramley J.

No Thumbnail Available
Last Name
First Name
Bramley J.

Search Results

Now showing 1 - 4 of 4
  • Article
    Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge : NW Indian Ocean
    (American Geophysical Union, 2006-05-31) Murton, Bramley J. ; Baker, Edward T. ; Sands, Carla M. ; German, Christopher R.
    About 90% of Earth's volcanism occurs along the global mid-ocean ridge system. Here, sporadic volcanic and tectonic activity is thought to cause cataclysmic release of hydrothermal fluids, forming event plumes. Each plume often contains as much hydrothermal effluent and heat as chronic hydrothermal venting from a typical vent site discharges during a year. To date, only a few event plumes have been detected, and only above intermediate-rate spreading ridges in the Pacific. Here, we report the first evidence for an unusually large event plume that originated from the slow-spreading (3 cm/yr full-rate) Carlsberg Ridge in the NW Indian Ocean. At 70 km long, up to 4540 km3 in volume and with up to 24 × 1016 J of excess heat, this event plume was substantially larger than previous ones and demonstrates that dispersion of hydrothermal heat and biological products from slow spreading ridges may be more significant and effective than hitherto imagined.
  • Article
    Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre
    (Nature Publishing Group, 2012-01-10) Connelly, Douglas P. ; Copley, Jonathan T. ; Murton, Bramley J. ; Stansfield, Kate ; Tyler, Paul A. ; German, Christopher R. ; Van Dover, Cindy L. ; Amon, Diva ; Furlong, Maaten ; Grindlay, Nancy ; Hayman, Nicholas W. ; Huhnerbach, Veit ; Judge, Maria ; Le Bas, Tim ; McPhail, Stephen ; Meier, Alexandra ; Nakamura, Ko-ichi ; Nye, Verity ; Pebody, Miles ; Pedersen, Rolf B. ; Plouviez, Sophie ; Sands, Carla M. ; Searle, Roger C. ; Stevenson, Peter ; Taws, Sarah ; Wilcox, Sally
    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
  • Article
    Architecture of North Atlantic contourite drifts modified by transient circulation of the Icelandic mantle plume
    (John Wiley & Sons, 2015-10-15) Parnell-Turner, Ross ; White, Nicholas J. ; McCave, I. Nick ; Henstock, Timothy J. ; Murton, Bramley J. ; Jones, Stephen M.
    Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik, and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulation.
  • Article
    Causes and consequences of diachronous V-shaped ridges in the North Atlantic Ocean
    (John Wiley & Sons, 2017-11-14) Parnell-Turner, Ross ; White, Nicky ; Henstock, Timothy J. ; Jones, Stephen M. ; Maclennan, John ; Murton, Bramley J.
    In the North Atlantic Ocean, the geometry of diachronous V-shaped features that straddle the Reykjanes Ridge is often attributed to thermal pulses which advect away from the center of the Iceland plume. Recently, two alternative hypotheses have been proposed: rift propagation and buoyant mantle upwelling. Here we evaluate these different proposals using basin-wide geophysical and geochemical observations. The centerpiece of our analysis is a pair of seismic reflection profiles oriented parallel to flow lines that span the North Atlantic Ocean. V-shaped ridges and troughs are mapped on both Neogene and Paleogene oceanic crust, enabling a detailed chronology of activity to be established for the last 50 million years. Estimates of the cumulative horizontal displacement across normal faults help to discriminate between brittle and magmatic modes of plate separation, suggesting that crustal architecture is sensitive to the changing planform of the plume. Water-loaded residual depth measurements are used to estimate crustal thickness and to infer mantle potential temperature which varies by ±25°C on timescales of 3–8 Ma. This variation is consistent with the range of temperatures inferred from geochemical modeling of dredged basaltic rocks along the ridge axis itself, from changes in Neogene deep-water circulation, and from the regional record of episodic Cenozoic magmatism. We conclude that radial propagation of transient thermal anomalies within an asthenospheric channel that is 150 ± 50 km thick best accounts for the available geophysical and geochemical observations.