Hsieh Chih-Chiang

No Thumbnail Available
Last Name
Hsieh
First Name
Chih-Chiang
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    A distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic ridge
    (Nature Publishing Group, 2016-03-03) Meyer, Julie L. ; Jaekel, Ulrike ; Tully, Benjamin J. ; Glazer, Brian T. ; Wheat, C. Geoffrey ; Lin, Huei-Ting ; Hsieh, Chih-Chiang ; Cowen, James P. ; Hulme, Samuel M. ; Girguis, Peter R. ; Huber, Julie A.
    The rock-hosted, oceanic crustal aquifer is one of the largest ecosystems on Earth, yet little is known about its indigenous microorganisms. Here we provide the first phylogenetic and functional description of an active microbial community residing in the cold oxic crustal aquifer. Using subseafloor observatories, we recovered crustal fluids and found that the geochemical composition is similar to bottom seawater, as are cell abundances. However, based on relative abundances and functional potential of key bacterial groups, the crustal fluid microbial community is heterogeneous and markedly distinct from seawater. Potential rates of autotrophy and heterotrophy in the crust exceeded those of seawater, especially at elevated temperatures (25°C) and deeper in the crust. Together, these results reveal an active, distinct, and diverse bacterial community engaged in both heterotrophy and autotrophy in the oxygenated crustal aquifer, providing key insight into the role of microbial communities in the ubiquitous cold dark subseafloor biosphere. An Author Correction to this article was published on 16 April 2020
  • Article
    Sampling of basement fluids via circulation obviation retrofit kits (CORKs) for dissolved gases, fluid fixation at the seafloor, and the characterization of organic carbon
    (Elsevier, 2020-08-15) Lin, Huei-Ting ; Hsieh, Chih-Chiang ; Repeta, Daniel J. ; Rappe, Michael S.
    The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. • We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems. • We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor. • We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.