Van Cise Amy M.

No Thumbnail Available
Last Name
Van Cise
First Name
Amy M.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Marine mammal skin microbiotas are influenced by host phylogeny
    (The Royal Society, 2020-05-20) Apprill, Amy ; Miller, Carolyn A. ; Van Cise, Amy M. ; U'Ren, Jana M. ; Leslie, Matthew S. ; Weber, Laura ; Baird, Robin W. ; Robbins, Jooke ; Landry, Scott ; Bogomolni, Andrea L. ; Waring, Gordon T.
    Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai‘i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.
  • Article
    Acoustic differentiation of Shiho- and Naisa-type short-finned pilot whales in the Pacific Ocean
    (Acoustical Society of America, 2017-02) Van Cise, Amy M. ; Roch, Marie ; Baird, Robin W. ; Mooney, T. Aran ; Barlow, Jay
    Divergence in acoustic signals used by different populations of marine mammals can be caused by a variety of environmental, hereditary, or social factors, and can indicate isolation between those populations. Two types of genetically and morphologically distinct short-finned pilot whales, called the Naisa- and Shiho-types when first described off Japan, have been identified in the Pacific Ocean. Acoustic differentiation between these types would support their designation as sub-species or species, and improve the understanding of their distribution in areas where genetic samples are difficult to obtain. Calls from two regions representing the two types were analyzed using 24 recordings from Hawai‘i (Naisa-type) and 12 recordings from the eastern Pacific Ocean (Shiho-type). Calls from the two types were significantly differentiated in median start frequency, frequency range, and duration, and were significantly differentiated in the cumulative distribution of start frequency, frequency range, and duration. Gaussian mixture models were used to classify calls from the two different regions with 74% accuracy, which was significantly greater than chance. The results of these analyses indicate that the two types are acoustically distinct, which supports the hypothesis that the two types may be separate sub-species.