Yamato Maya

No Thumbnail Available
Last Name
Yamato
First Name
Maya
ORCID

Search Results

Now showing 1 - 4 of 4
  • Book chapter
    Hearing in cetaceans : from natural history to experimental biology
    ( 2012-02) Mooney, T. Aran ; Yamato, Maya ; Branstetter, Brian K.
    Sound is the primary sensory cue for most marine mammals, and this is especially true for cetaceans. To passively and actively acquire information about their environment, cetaceans have perhaps the most derived ears of all mammals, capable of sophisticated, sensitive hearing and auditory processing. These capabilities have developed for survival in an underwater world where sound travels five times faster than in air, and where light is quickly attenuated and often limited at depth, at night, and in murky waters. Cetacean auditory evolution has capitalized on the ubiquity of sound cues and the efficiency of underwater acoustic communication. The sense of hearing is central to cetacean sensory ecology, enabling vital behaviors such as locating prey, detecting predators, identifying conspecifics, and navigating. Increasing levels of anthropogenic ocean noise appears to influence many of these activities. Here we describe the historical progress of investigations on cetacean hearing, with a particular focus on odontocetes and recent advancements. While this broad topic has been studied for several centuries, new technologies in the last two decades have been leveraged to improve our understanding of a wide range of taxa, including some of the most elusive species. This paper addresses topics including how sounds are received, what sounds are detected, hearing mechanisms for complex acoustic scenes, recent anatomy and physiology studies, the potential impacts of noise, and mysticete hearing. We conclude by identifying emerging research topics and areas which require greater focus.
  • Article
    The auditory anatomy of the minke whale (Balaenoptera acutorostrata) : a potential fatty sound reception pathway in a baleen whale
    (John Wiley & Sons, 2012-05-12) Yamato, Maya ; Ketten, Darlene R. ; Arruda, Julie ; Cramer, Scott R. ; Moore, Kathleen M. T.
    Cetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes. Here, we report a potential fatty sound reception pathway in the minke whale (Balaenoptera acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven minke whales was investigated using computerized tomography and magnetic resonance imaging, verified through dissections. Findings include a large, well-formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the tympanoperiotic complex. This fat body inserts into the tympanoperiotic complex at the lateral aperture between the tympanic and periotic bones and is in contact with the ossicles. There is also a second, smaller body of fat found within the tympanic bone, which contacts the ossicles as well. This is the first analysis of these fatty tissues' association with the auditory structures in a mysticete, providing anatomical evidence that fatty sound reception pathways may not be a unique feature of odontocete cetaceans.
  • Thesis
    The auditory system of the minke whale (Balaenoptera acutorostrata) : a potential fatty sound reception pathway in a mysticete cetacean
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2012-09) Yamato, Maya
    Despite widespread concerns about the effects of anthropogenic noise on baleen whales (suborder Mysticeti), we lack basic information about their auditory physiology for comprehensive risk assessments. Hearing ranges and sensitivities could be measured if customized equipment and methods were developed based on how baleen whales receive sound. However, sound reception pathways in baleen whales are currently unknown. This thesis presents an integrative approach to understanding hearing in baleen whales through dissections, biomedical imaging, biochemical analyses, and modeling sound propagation through a whale head using the Finite Element Method (FEM). We focused on the minke whale (Balaenoptera acutorostrata) because it is one of the smallest and most abundant mysticete species, reducing logistical difficulties for dissections and experiments. We discovered a large, well-formed fat body extending from the blubber region to the ears and contacting the ossicles. Although odontocetes, or toothed whales, are thought to use specialized “acoustic fats” for sound reception, no such tissues had been described for mysticetes to date. Our study indicates that the basic morphology and biochemical composition of the minke whale “ear fats” are very different from those of odontocete acoustic fats. However, the odontocete and mysticete fatty tissues share some characteristics, such as being conserved even during starvation, containing fewer dietary signals compared to blubber, and having well-defined attachments to the tympano-periotic complex, which houses the middle and inner ears. FE models of the whale head indicated that the ear fats caused a slight increase in the total pressure magnitude by the ears, and this focusing effect could be attributed to the low density and low sound speed of the ear fats in the models. Fatty tissues are known to have lower densities and sound speeds than other types of soft tissues, which may explain why they are an important component of the auditory system of odontocetes, and perhaps mysticete cetaceans as well. In an aquatic habitat where the pinna and air-filled ear canal are no longer effective at collecting and focusing sound towards the ears, we propose that both odontocete and mysticete cetaceans have incorporated fatty tissues into their auditory systems for underwater sound reception.
  • Preprint
    Characterization of lipids in adipose depots associated with minke and fin whale ears : comparison with “acoustic fats” of toothed whales
    ( 2014-01) Yamato, Maya ; Koopman, Heather N. ; Niemeyer, Misty E. ; Ketten, Darlene R.
    In an underwater environment where light attenuates much faster than in air, cetaceans have evolved to rely on sound and their sense of hearing for vital functions. Odontocetes (toothed whales) have developed a sophisticated biosonar system called echolocation, allowing them to perceive their environment using their sense of hearing (Schevill and McBride 1956, Kellogg 1958, Norris et al. 1961). Echolocation has not been demonstrated in mysticetes (baleen whales). However, mysticetes rely on low frequency sounds, which can propagate very long distances under water, to communicate with potential mates and other conspecifics (Cummings and Thompson 1971).