Boetius Antje

No Thumbnail Available
Last Name
Boetius
First Name
Antje
ORCID
0000-0003-2117-4176
0000-0003-2117-4176

Search Results

Now showing 1 - 5 of 5
  • Article
    Eruption of a deep-sea mud volcano triggers rapid sediment movement
    (Nature Publishing Group, 2014-11-11) Feseker, Tomas ; Boetius, Antje ; Wenzhofer, Frank ; Blandin, Jerome ; Olu, Karine ; Yoerger, Dana R. ; Camilli, Richard ; German, Christopher R. ; de Beer, Dirk
    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor.
  • Article
    Influence of ice thickness and surface properties on light transmission through Arctic sea ice
    (John Wiley & Sons, 2015-09-04) Katlein, Christian ; Arndt, Stefanie ; Nicolaus, Marcel ; Perovich, Donald K. ; Jakuba, Michael V. ; Suman, Stefano ; Elliott, Stephen M. ; Whitcomb, Louis L. ; McFarland, Christopher J. ; Gerdes, Rudiger ; Boetius, Antje ; German, Christopher R.
    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
  • Article
    Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice
    (MDPI, 2020-08-11) Barker, Laughlin D. L. ; Jakuba, Michael V. ; Bowen, Andrew D. ; German, Christopher R. ; Maksym, Ted ; Mayer, Larry A. ; Boetius, Antje ; Dutrieux, Pierre ; Whitcomb, Louis L.
    This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice).
  • Article
    Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge
    (Nature Communications, 2022-10-31) German, Christopher R ; Reeves, Eoghan P ; Türke, Andreas ; Diehl, Alexander ; Albers, Elmar ; Bach, Wolfgang ; Purser, Autun ; Ramalho, Sofia P ; Suman, Stefano ; Mertens, Christian ; Walter, Maren ; Ramirez-Llodra, Eva ; Schlindwein, Vera ; Bünz, Stefan ; Boetius, Antje
    The Aurora hydrothermal system, Arctic Ocean, hosts active submarine venting within an extensive field of relict mineral deposits. Here we show the site is associated with a neovolcanic mound located within the Gakkel Ridge rift-valley floor, but deep-tow camera and sidescan surveys reveal the site to be ≥100 m across-unusually large for a volcanically hosted vent on a slow-spreading ridge and more comparable to tectonically hosted systems that require large time-integrated heat-fluxes to form. The hydrothermal plume emanating from Aurora exhibits much higher dissolved CH/Mn values than typical basalt-hosted hydrothermal systems and, instead, closely resembles those of high-temperature ultramafic-influenced vents at slow-spreading ridges. We hypothesize that deep-penetrating fluid circulation may have sustained the prolonged venting evident at the Aurora hydrothermal field with a hydrothermal convection cell that can access ultramafic lithologies underlying anomalously thin ocean crust at this ultraslow spreading ridge setting. Our findings have implications for ultra-slow ridge cooling, global marine mineral distributions, and the diversity of geologic settings that can host abiotic organic synthesis - pertinent to the search for life beyond Earth.
  • Article
    Hot vent beaneath an icy ocean: the Aurora vend field, Gakkel Ridge, revealed
    (Oceanography Society, 2022-11-08) Ramirez-Llodra, Eva ; Argentino, Claudio ; Baker, Maria ; Boetius, Antje ; Costa, Carolina ; Dahle, Håkon ; Denny, Emily M. ; Dessandier, Pierre-Antoine ; Eilertsen, Mari H. ; Ferre, Benedicte ; German, Christopher R. ; Hand, Kevin ; Hilário, Ana ; Hislop, Lawrence ; Jamieson, John W. ; Kalnitchenko, Dimitri ; Mall, Achim ; Panieri, Giuliana ; Purser, Autun ; Ramalho, Sofia P. ; Reeves, Eoghan P. ; Rolley, Leighton ; Pereira, Samuel I. ; Ribeiro, Pedro A. ; Sert, Muhammed Fatih ; Steen, Ida H. ; Stetzler, Marie ; Stokke, Runar ; Victorero, Lissette ; Vulcano, Francesca ; Vågenes, Stig ; Waghorn, Kate Alyse ; Buenz, Stefan
    Evidence of hydrothermal venting on the ultra-slow spreading Gakkel Ridge in the Central Arctic Ocean has been available since 2001, with first visual evidence of black smokers on the Aurora Vent Field obtained in 2014. But it was not until 2021 that the first ever remotely operated vehicle (ROV) dives to hydrothermal vents under permanent ice cover in the Arctic were conducted, enabling the collection of vent fluids, rocks, microbes, and fauna. In this paper, we present the methods employed for deep-sea ROV operations under drifting ice. We also provide the first description of the Aurora Vent Field, which includes three actively venting black smokers and diffuse flow on the Aurora mound at ~3,888 m depth on the southern part of the Gakkel Ridge (82.5°N). The biological communities are dominated by a new species of cocculinid limpet, two small gastropods, and a melitid amphipod. The ongoing analyses of Aurora Vent Field samples will contribute to positioning the Gakkel Ridge hydrothermal vents in the global biogeographic puzzle of hydrothermal vents.