Caruso
Francesco
Caruso
Francesco
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleAcoustic recordings of rough-toothed dolphin (Steno bredanensis) offshore Eastern Sicily (Mediterranean Sea)(Acoustical Society of America, 2019-09-25) Caruso, Francesco ; Sciacca, Virginia ; Parisi, Ignazio ; Viola, Salvatore ; de Vincenzi, Giovanni ; Bocconcelli, Alessandro ; Mooney, T. Aran ; Sayigh, Laela S. ; Li, Songhai ; Filiciotto, Francesco ; Moulins, Aurelie ; Tepsich, Paola ; Rosso, Massimilianoough-toothed dolphin's abundance and distribution is largely unknown worldwide and evaluation of its conservation status in the Mediterranean Sea is necessary. A rough-toothed dolphin was sighted offshore Eastern Sicily (Mediterranean Sea) in July 2017 and acoustic data were acquired in the same area of Watkins, Tyack, Moore, and Notarbartolo di Sciara [(1987). Mar. Mamm. Sci. 3, 78–82]. An automatic detection algorithm was developed to identify the echolocation clicks recorded within both datasets and a recurrent inter-click interval value was identified during the new encounter. Distinctive whistle classes were also identified with similar contour shapes within both datasets.
-
ArticleDiel differences in blue whale (Balaenoptera musculus) dive behavior increase nighttime risk of ship strikes in northern Chilean Patagonia(Wiley, 2020-11-09) Caruso, Francesco ; Hickmott, Leigh S. ; Warren, Joseph D. ; Segre, Paolo ; Chiang, Gustavo ; Bahamonde, Paulina A. ; Español-Jiménez, Sonia ; Li, Songhai ; Bocconcelli, AlessandroThe northern Chilean Patagonia region is a key feeding ground and a nursing habitat in the southern hemisphere for blue whales (Balaenoptera musculus). From 2014 to 2019, during 6 separate research cruises, the dive behavior of 28 individual blue whales was investigated using bio‐logging tags (DTAGs), generating ≈190 h of data. Whales dove to significantly greater depths during the day compared to nighttime (day: 32.6 ± 18.7 m; night: 6.2 ± 2.7 m; P < 0.01). During the night, most time was spent close to the surface (86% ± 9.4%; P < 0.01) and at depths of less than 12 m. From 2016 to 2019, active acoustics (scientific echosounders) were used to record prey (euphausiids) density and distribution simultaneously with whale diving data. Tagged whales appeared to perform dives relative to the vertical migration of prey during the day. The association between diurnal prey migration and shallow nighttime dive behavior suggests that blue whales are at increased risk of ship collisions during periods of darkness since the estimated maximum ship draft of vessels operating in the region is also ≈12 m. In recent decades, northern Chilean Patagonia has seen a large increase in marine traffic due to a boom in salmon aquaculture and the passenger ship industry. Vessel strike risks for large whales are likely underestimated in this region. Results reported in this study may be valuable for policy and mitigation decisions regarding conservation of the endangered blue whale.
-
ArticleQuantifying the swimming gaits of veined squid (Loligo forbesi) using bio-logging tags(Company of Biologists, 2019-10-21) Flaspohler, Genevieve Elaine ; Caruso, Francesco ; Mooney, T. Aran ; Katija, Kakani ; Fontes, Jorge ; Afonso, Pedro ; Shorter, K. AlexSquid are mobile, diverse, ecologically important marine organisms whose behavior and habitat use can have substantial impacts on ecosystems and fisheries. However, as a consequence in part of the inherent challenges of monitoring squid in their natural marine environment, fine-scale behavioral observations of these free-swimming, soft-bodied animals are rare. Bio-logging tags provide an emerging way to remotely study squid behavior in their natural environments. Here, we applied a novel, high-resolution bio-logging tag (ITAG) to seven veined squid, Loligo forbesii, in a controlled experimental environment to quantify their short-term (24 h) behavioral patterns. Tag accelerometer, magnetometer and pressure data were used to develop automated gait classification algorithms based on overall dynamic body acceleration, and a subset of the events were assessed and confirmed using concurrently collected video data. Finning, flapping and jetting gaits were observed, with the low-acceleration finning gaits detected most often. The animals routinely used a finning gait to ascend (climb) and then glide during descent with fins extended in the tank's water column, a possible strategy to improve swimming efficiency for these negatively buoyant animals. Arms- and mantle-first directional swimming were observed in approximately equal proportions, and the squid were slightly but significantly more active at night. These tag-based observations are novel for squid and indicate a more efficient mode of movement than suggested by some previous observations. The combination of sensing, classification and estimation developed and applied here will enable the quantification of squid activity patterns in the wild to provide new biological information, such as in situ identification of behavioral states, temporal patterns, habitat requirements, energy expenditure and interactions of squid through space–time in the wild.