Klein Frieder

No Thumbnail Available
Last Name
Klein
First Name
Frieder
ORCID
0000-0001-9560-5093

Search Results

Now showing 1 - 20 of 21
  • Preprint
    Thallium as a tracer of fluid–rock interaction in the shallow Mariana forearc
    ( 2015-09) Nielsen, Sune G. ; Klein, Frieder ; Kading, Tristan ; Blusztajn, Jerzy S. ; Wickham, Katie
    Fluids driven off the subducting Pacific plate infiltrate the shallow Mariana 26 forearc and lead to extensive serpentinization of mantle peridotite. However, the sources, pathways, and chemical modifications of ascending, slab-derived fluids remain poorly constrained and controversial. In this study, we use thallium (Tl) concentrations and isotopic ratios of serpentinized peridotite and rodingitized diabase from the South Chamorro and Conical Seamounts to discriminate between potential fluid sources with distinct Tl isotope compositions. Serpentinite samples from the Mariana forearc all display ε205Tl > - 0.5 (where ε205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997)/(205Tl/203TlSRM 997)), which is significantly enriched in 205Tl compared to the normal mantle (ε205Tl = -2). Given that high temperature hydrothermal processes do not impart significant Tl isotope fractionation, the isotope compositions of the serpentinites must reflect that of the serpentinizing fluid. Pelagic sediments are the only known slab component that consistently display ε205Tl > -0.5 and, therefore, we interpret the heavy Tl isotope signatures as signifying that the serpentinizing fluids were derived from subducting pelagic sediments. A rodingitized diabase from Conical Seamount was found to have an ε205Tl of 0.8, suggesting that sediment-sourced serpentinization fluids could also affect diabase and other mafic lithologies in the shallow Mariana forearc. Forearc rodingitization of diabase led to a strong depletion in Tl content and a virtually complete loss of K, Na and Rb. The chemical composition of hybrid fluids resulting from serpentinization of harzburgite with concomitant rodingitization of diabase can be highly alkaline, depleted in Si, yet enriched in Ca, Na, K, and Rb, which is consistent with the composition of fluids emanating from mud volcanoes in the Mariana forearc. Our study suggests that fluid-rock interactions between sedimentary, mafic, and ultramafic lithologies are strongly interconnected even in the shallowest parts of subduction zones. We conclude that transfer of fluids and dissolved elements at temperatures and pressures below 400°C and 1GPa, respectively, must be taken into account when elemental budgets and mass transfer between the subducting plate, the forearc, the deep mantle and the ocean are evaluated.
  • Article
    Brucite formation and dissolution in oceanic serpentinite
    (European Association of Geochemistry, 2020-10-27) Klein, Frieder ; Humphris, Susan E. ; Bach, Wolfgang
    Brucite is an important, albeit elusive, hydrous mineral formed during serpentinisation, a vector of Mg from the mantle to seawater, and possibly a significant host of water in oceanic serpentinite. However, the abundance of brucite has not been quantified in oceanic serpentinite and its fate and related chemical fluxes remain uncertain. We used thermal analysis and confocal Raman spectroscopy to determine the abundance and distribution of brucite in serpentinite recovered by seafloor drilling (n = 48) and dredging (n = 22). Almost all (90 %) of the drilled serpentinite samples contained brucite. The brucite contents increased with increasing extent of serpentinisation and constituted up to 15.6 wt. % of the altered rock. In contrast, dredged serpentinites were devoid of brucite and lost 4.0 wt. % MgO on average, which translates to an estimated average annual flux of 1.3 × 1010 mole Mg and about 2 × 1010 mole alkalinity during seafloor weathering of serpentinite globally. Our data suggest that, on average, brucite stores ∼20 % of the water in unweathered serpentinite, making brucite one of the largest water carriers in slow and ultra-slow spreading oceanic lithosphere.
  • Article
    Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions
    (National Academy of Sciences, 2019-09-03) Klein, Frieder ; Grozeva, Niya G. ; Seewald, Jeffrey S.
    The conditions of methane (CH4) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H2) and CH4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH4(g) and H2(g) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H2O. The generation of molecular H2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH4. Once formed, CH4(g) and H2(g) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH4 and H2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system.
  • Article
    Hydrogenation reactions of carbon on Earth: linking methane, margarine, and life
    (GeoScienceWorld, 2020-05-01) McGlynn, Shawn E. ; Glass, Jennifer B. ; Johnson-Finn, Kristin ; Klein, Frieder ; Sanden, Sebastian A. ; Schrenk, Matthew O. ; Ueno, Yuichiro ; Vitale-Brovarone, Alberto
    Hydrogenation reactions are a major route of electron and proton flow on Earth. Interfacing geology and organic chemistry, hydrogenations occupy pivotal points in the Earth’s global geochemical cycles. Some examples of hydrogenation reactions on Earth today include the production and consumption of methane in both abiotic and biotic reactions, the reduction of protons in hydrothermal settings, and the biological synthesis and degradation of fatty acids. Hydrogenation reactions were likely important for prebiotic chemistry on the early Earth, and today serve as one of the fundamental reaction classes that enable cellular life to construct biomolecules. An understanding and awareness of hydrogenation reactions is helpful for comprehending the larger web of molecular and material inter-conversions on our planet. In this brief review we detail some important hydrogenation and dehydrogenation reactions as they relate to geology, biology, industry, and atmospheric chemistry. Such reactions have implications ranging from the suite of reactions on early Earth to industrial applications like the production of hydrocarbon fuel.
  • Article
    Preferential formation of chlorite over talc during si‐metasomatism of ultramafic rocks in subduction zones
    (American Geophysical Union, 2022-09-21) Codillo, Emmanuel A. ; Klein, Frieder ; Marschall, Horst R.
    Talc formation via silica‐metasomatism of ultramafic rocks is believed to play key roles in subduction zone processes. Yet, the conditions of talc formation remain poorly constrained. We used thermodynamic reaction‐path models to assess the formation of talc at the slab‐mantle interface and show that it is restricted to a limited set of pressure–temperature conditions, protolith, and fluid compositions. In contrast, our models predict that chlorite formation is ubiquitous at conditions relevant to the slab‐mantle interface of subduction zones. The scarcity of talc and abundance of chlorite is evident in the rock record of exhumed subduction zone terranes. Talc formation during Si‐metasomatism may thus play a more limited role in volatile cycling, strain localization, and in controlling the decoupling‐coupling transition of the plate interface. Conversely, the observed and predicted ubiquity of chlorite corroborates its prominent role in slab‐mantle interface processes that previous studies attributed to talc.
  • Dataset
    IODP360 - Raman spectra of a core sample taken at the Atlantis Bank
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-11-08) Edgcomb, Virginia P. ; Klein, Frieder
    IODP360 - Raman spectra of a core sample taken at the Atlantis Bank. Sample taken on board of the R/V JOIDES Resolution between November 30, 2015 and January 30, 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/854820
  • Article
    Serpentinite-derived slab fluids control the oxidation state of the subarc mantle
    (American Association for the Advancement of Science, 2021-11-26) Zhang, Yuxiang ; Gazel, Esteban ; Gaetani, Glenn A. ; Klein, Frieder
    Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
  • Article
    Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture
    (Elsevier, 2020-05-26) McCollom, Thomas M. ; Klein, Frieder ; Moskowitz, Bruce ; Berquo, Thelma S. ; Bach, Wolfgang ; Templeton, Alexis S.
    A series of laboratory experiments was conducted to investigate serpentinization of olivine–pyroxene mixtures at 230 °C, with the objective of evaluating the effect of mixed compositions on Fe partitioning among product minerals, H2 generation, and reaction rates. An initial experiment reacted a mixture of 86 wt.% olivine and 14 wt.% orthopyroxene (Opx) with the same initial grain size for 387 days. The experiment resulted in extensive reaction (∼53% conversion), and solids recovered at termination of the experiment were dominated by Fe-bearing chrysotile and relict olivine along with minor brucite and magnetite. Only limited amounts of H2 were generated during the first ∼100 days of the experiment, but the rate of H2 generation then increased sharply coincident with an increase in pH from mildly alkaline to strongly alkaline conditions. Two shorter term experiments with the same reactants (26 and 113 days) produced a mixture of lizardite and talc that formed a thin coating on relict olivine and Opx grains, with virtually no generation of H2. Comparison of the results with reaction path models indicates that the Opx reacted about two times faster than olivine, which contrasts with some previous studies that suggested olivine should react more rapidly than Opx at the experimental conditions. The models also indicate that the long-term experiment transitioned from producing serpentine ± talc early in the early stages to precipitation of serpentine plus magnetite, with brucite beginning to precipitate only late in the experiment as Opx was depleted. The results indicate that overall reaction of olivine and Opx was initially relatively slow, but reaction rates accelerated substantially when the pH transitioned to strongly alkaline conditions. Serpentine and brucite precipitated from the olivine-Opx mixture had higher Fe contents than observed in olivine-only experiments at mildly alkaline pH, but had comparable Fe contents to reaction of olivine at strongly alkaline pH implying that higher pH may favor greater partitioning of Fe into serpentine and brucite and less into magnetite. Despite the presence of brucite, dissolved silica activities during the long-term olivine-Opx experiment maintained levels well above serpentine-brucite equilibrium. Instead, silica activities converged on levels close to metastable equilibrium between brucite and olivine. It is proposed that silica levels during the experiment may have been regulated by exchange of SiO2 between the fluid and a silica-depleted, brucite-like surface layer on dissolving olivine.
  • Article
    The effect of pH on rates of reaction and hydrogen generation during serpentinization
    (The Royal Society, 2020-01-06) McCollom, Thomas M. ; Klein, Frieder ; Solheid, Peter ; Moskowitz, Bruce
    A series of three laboratory experiments were conducted to investigate how pH affects reaction pathways and rates during serpentinization. Two experiments were conducted under strongly alkaline conditions using olivine as reactant at 200 and 230°C, and the results were compared with previous studies performed using the same reactants and methods at more neutral pH. For both experiments, higher pH resulted in more rapid serpentinization of the olivine and generation of larger amounts of H2 for comparable reaction times. Proportionally greater amounts of Fe were partitioned into brucite and chrysotile and less into magnetite in the experiments conducted at higher pH. In a third experiment, alkaline fluids were injected into an ongoing experiment containing olivine and orthopyroxene to raise the pH from circumneutral to strongly alkaline conditions. Increasing the pH of the olivine-orthopyroxene experiment resulted in an immediate and steep increase in H2 production, and led to far more extensive reaction of the primary minerals compared to a similar experiment conducted under more neutral conditions. The results suggest that the development of strongly alkaline conditions in actively serpentinizing systems promotes increased rates of reaction and H2 production, enhancing the flux of H2 available to support biological activity in these environments.
  • Preprint
    Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle
    ( 2014-11) Kahl, Wolf-Achim ; Jons, Niels ; Bach, Wolfgang ; Klein, Frieder ; Alt, Jeffrey C.
    Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpe ntinization events represented by different vein generations with distinct trace element contents can be recognized. Measured Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a deacreasing influence of fluid discharge from sediments on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry the slab-flux signature, either because FME were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are characterized by reduced trace element contents with a slightly increased Rb/Cs ratio near 10. This lack of geochemical slab signatures consistently displayed in all late serpentinization stages may indicate that the slab-derived fluids have been completely reset (i.e. the FME excesses were removed) by continued water-rock reaction within the subduction channel. The final stage of diapiric rise of matrix and clasts in the conduits is characterized by brucite-dominated alteration of the clasts from the clast rim inward (independent of the intra-clast fabric relations), which corresponds to re-equilibration with alkaline, low-silica activity fluids in the rising mud.
  • Preprint
    From serpentinization to carbonation : new insights from a CO2 injection experiment
    ( 2013-08) Klein, Frieder ; McCollom, Thomas M.
    We injected a CO2-rich hydrous fluid of seawater chlorinity into an ongoing, mildly reducing (H2(aq) ≈ 3 mmol/kg) serpentinization experiment at 230°C and 35 MPa to examine the changes in fluid chemistry and mineralogy during mineral carbonation. The chemistry of 11 fluid samples was measured, speciated, and compared with MgO-SiO2-H2O-CO2 (MSHC) phase equilibria to approximate the reaction pathway from serpentinization to carbonation. Although the overall system was in apparent disequilibrium, the speciated activities of dissolved silica (aSiO2(aq)) and carbon dioxide (aCO2(aq)) evolved roughly along MSHC equilibrium phase boundaries, indicative of 4 distinct mineral assemblages over time: 1) serpentine22 brucite (± magnesite) before the injection, to 2) serpentine-talc-magnesite 2 hours after the injection, to 3) quartz-magnesite (48h after injection), and 4) metastable olivine – magnesite (623h after injection) until the experiment was terminated. Inspection of the solid reaction products revealed the presence of serpentine, magnesite, minor talc, and magnetite, in addition to relict olivine. Although quartz was saturated over a short segment of the experiment, it was not found in the solid reaction products. A marked and rapid change in fluid chemistry suggests that serpentinization ceased and precipitation of magnesite initiated immediately after the injection. A sharp decrease in pH after the injection promoted the dissolution of brucite and olivine, which liberated SiO2(aq) and dissolved Mg. Dissolved Mg was efficiently removed from the solution via magnesite precipitation, whereas the formation of talc was relatively sluggish. This process accounts for an increase in aSiO2(aq) to quartz saturation shortly after the injection of the CO2-rich fluid. Molecular dihydrogen (H2(aq)) was generated during serpentinization of olivine by oxidation of ferrous iron before the injection; however, no additional H2(aq) was generated after the injection. Speciation calculations suggest a strong affinity for the formation of methane (CH4(aq)) at the expense of CO2(aq) and H2(aq) after the injection, but increased CH4(aq) formation was not observed. These findings suggest that kinetically fast mineral carbonation dominates over sluggish CH4(aq) formation in mildly reducing serpentinization systems affected by injection of CO2-rich fluids.
  • Article
    Carbonation of serpentinite in creeping faults of California
    (American Geophysical Union, 2022-08-11) Klein, Frieder ; Goldsby, David L. ; Lin, Jian ; Andreani, Muriel
    Several large strike slip faults in central and northern California accommodate plate motions through aseismic creep. Although there is no consensus regarding the underlying cause of aseismic creep, aqueous fluids and mechanically weak, velocity-strengthening minerals appear to play a central role. This study integrates field observations and thermodynamic modeling to examine possible relationships between the occurrence of serpentinite, silica-carbonate rock, and CO2-rich aqueous fluids in creeping faults of California. Our models predict that carbonation of serpentinite leads to the formation of talc and magnesite, followed by silica-carbonate rock. While abundant exposures of silica-carbonate rock indicate complete carbonation, serpentinite-hosted CO2-rich spring fluids are strongly supersaturated with talc at elevated temperatures. Hence, carbonation of serpentinite is likely ongoing in parts of the San Andres Fault system and operates in conjunction with other modes of talc formation that may further enhance the potential for aseismic creep, thereby limiting the potential for large earthquakes.
  • Article
    Fluid-rock interactions in the shallow Mariana forearc: Carbon cycling and redox conditions
    (European Geosciences Union, 2019-06-24) Albers, Elmar ; Bach, Wolfgang ; Klein, Frieder ; Menzies, Catriona D. ; Lucassen, Friedrich ; Teagle, Damon A.H.
    Few data exist that provide insight into processes affecting the long-term carbon cycle at shallow forearc depths. To better understand the mobilization of C in sediments and crust of the subducting slab, we investigated carbonate materials that originate from the subduction channel at the Mariana forearc (< 20 km) and were recovered during International Ocean Discovery Program Expedition 366. Calcium carbonates occur as vein precipitates within metavolcanic and metasedimentary clasts. The clasts represent portions of the subducting lithosphere, including ocean island basalt, that were altered at lower blueschist facies conditions and were subsequently transported to the forearc seafloor by serpentinite mud volcanism. Euhedral aragonite and calcite and the lack of deformation within the veins suggest carbonate formation in a stress-free environment after peak metamorphism affected their hosts. Intergrowth with barite and marked negative Ce anomalies in carbonate attest the precipitation within a generally oxic environment, that is an environment not controlled by serpentinization. Strontium and O isotopic compositions in carbonate (87Sr∕86Sr = 0.7052 to 0.7054, δ18OVSMOW = 20 to 24 ‰) imply precipitation from slab-derived fluids at temperatures between ∼130 and 300 ∘C. These temperature estimates are consistent with the presence of blueschist facies phases such as lawsonite coexisting with the carbonates in some veins. Incorporated C is inorganic (δ13CVPDB = −1 ‰ to +4 ‰) and likely derived from the decarbonation of calcareous sediment and/or oceanic crust. These findings provide evidence for the mobilization of C in the downgoing slab at depths of < 20 km. Our study shows for the first time in detail that a portion of this C forms carbonate precipitates in the subduction channel of an active convergent margin. This process may be an important asset in understanding the deep carbon cycle since it highlights that some C is lost from the subducting lithosphere before reaching greater depths.
  • Article
    Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks
    (Springer Nature, 2021-07-26) Coskun, Ömer K. ; Vuillemin, Aurèle ; Schubotz, Florence ; Klein, Frieder ; Sichel, Susanna E. ; Eisenreich, Wolfgang ; Orsi, William D.
    Thermodynamic models predict that H2 is energetically favorable for seafloor microbial life, but how H2 affects anabolic processes in seafloor-associated communities is poorly understood. Here, we used quantitative 13C DNA stable isotope probing (qSIP) to quantify the effect of H2 on carbon assimilation by microbial taxa synthesizing 13C-labeled DNA that are associated with partially serpentinized peridotite rocks from the equatorial Mid-Atlantic Ridge. The rock-hosted seafloor community was an order of magnitude more diverse compared to the seawater community directly above the rocks. With added H2, peridotite-associated taxa increased assimilation of 13C-bicarbonate and 13C-acetate into 16S rRNA genes of operational taxonomic units by 146% (±29%) and 55% (±34%), respectively, which correlated with enrichment of H2-oxidizing NiFe-hydrogenases encoded in peridotite-associated metagenomes. The effect of H2 on anabolism was phylogenetically organized, with taxa affiliated with Atribacteria, Nitrospira, and Thaumarchaeota exhibiting the most significant increases in 13C-substrate assimilation in the presence of H2. In SIP incubations with added H2, an order of magnitude higher number of peridotite rock-associated taxa assimilated 13C-bicarbonate, 13C-acetate, and 13C-formate compared to taxa that were not associated with peridotites. Collectively, these findings indicate that the unique geochemical nature of the peridotite-hosted ecosystem has selected for H2-metabolizing, rock-associated taxa that can increase anabolism under high H2 concentrations. Because ultramafic rocks are widespread in slow-, and ultraslow-spreading oceanic lithosphere, continental margins, and subduction zones where H2 is formed in copious amounts, the link between H2 and carbon assimilation demonstrated here may be widespread within these geological settings.
  • Article
    Fluid‐mediated mass transfer between mafic and ultramafic rocks in subduction zones
    (American Geophysical Union, 2022-07-11) Codillo, Emmanuel A. ; Klein, Frieder ; Dragovic, Besim ; Marschall, Horst R. ; Baxter, Ethan ; Scambelluri, Marco ; Schwarzenbach, Esther M.
    Metasomatic reaction zones between mafic and ultramafic rocks exhumed from subduction zones provide a window into mass-transfer processes at high pressure. However, accurate interpretation of the rock record requires distinguishing high-pressure metasomatic processes from inherited oceanic signatures prior to subduction. We integrated constraints from bulk-rock geochemical compositions and petrophysical properties, mineral chemistry, and thermodynamic modeling to understand the formation of reaction zones between juxtaposed metagabbro and serpentinite as exemplified by the Voltri Massif (Ligurian Alps, Italy). Distinct zones of variably metasomatized metagabbro are dominated by chlorite, amphibole, clinopyroxene, epidote, rutile, ilmenite, and titanite between serpentinite and eclogitic metagabbro. Whereas the precursor serpentinite and oxide gabbro formed and were likely already in contact in an oceanic setting, the reaction zones formed by diffusional Mg-metasomatism between the two rocks from prograde to peak, to retrograde conditions in a subduction zone. Metasomatism of mafic rocks by Mg-rich fluids that previously equilibrated with serpentinite could be widespread along the subduction interface, within the subducted slab, and the mantle wedge. Furthermore, the models predict that talc formation by Si-metasomatism of serpentinite in subduction zones is limited by pressure-dependent increase in the silica activity buffered by the serpentine-talc equilibrium. Elevated activities of aqueous Ca and Al species would also favor the formation of chlorite and garnet. Accordingly, unusual conditions or processes would be required to stabilize abundant talc at high P-T conditions. Alternatively, a different set of mineral assemblages, such as serpentine- or chlorite-rich rocks, may be controlling the coupling-decoupling transition of the plate interface.
  • Article
    The final stages of slip and volcanism on an oceanic detachment fault at 13°48′N, Mid‐Atlantic Ridge
    (John Wiley & Sons, 2018-09-14) Parnell-Turner, Ross ; Mittelstaedt, Eric ; Kurz, Mark D. ; Jones, Meghan R. ; Soule, Samuel A. ; Klein, Frieder ; Wanless, V. Dorsey ; Fornari, Daniel J.
    While processes associated with initiation and maintenance of oceanic detachment faults are becoming better constrained, much less is known about the tectonic and magmatic conditions that lead to fault abandonment. Here we present results from near‐bottom investigations using the submersible Alvin and autonomous underwater vehicle Sentry at a recently extinct detachment fault near 13°48′N, Mid‐Atlantic Ridge, that allow documentation of the final stages of fault activity and magmatism. Seafloor imagery, sampling, and near‐bottom magnetic data show that the detachment footwall is intersected by an ~850 m‐wide volcanic outcrop including pillow lavas. Saturation pressures in these vesicular basalts, based on dissolved H2O and CO2, are less than their collection pressures, which could be explained by eruption at a shallower level than their present depth. Sub‐bottom profiles reveal that sediment thickness, a loose proxy for seafloor age, is ~2 m greater on top of the volcanic terrain than on the footwall adjacent to the hanging‐wall cutoff. This difference could be explained by current‐driven erosion in the axial valley or by continued slip after volcanic emplacement, on either a newly formed or pre‐existing fault. Since current speeds near the footwall are unlikely to be sufficient to cause significant erosion, we favor the hypothesis that detachment slip continued after the episode of magmatism, consistent with growing evidence that oceanic detachments can continue to slip despite hosting magmatic intrusions.
  • Article
    Effect of water activity on rates of serpentinization of olivine
    (Nature Publishing Group, 2017-07-14) Lamadrid, Hector ; Rimstidt, J. Donald ; Schwarzenbach, Esther M. ; Klein, Frieder ; Ulrich, Sarah ; Dolocan, Andrei ; Bodnar, Robert J.
    The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth’s surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases.
  • Article
    Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data
    (Elsevier, 2020-10-17) Lin, Honglei ; Tarnas, Jesse D. ; Mustard, John F. ; Zhang, Xia ; Wei, Yong ; Wan, Weixing ; Klein, Frieder ; Kellner, James R.
    Serpentine and carbonate are products of serpentinization and carbonation processes on Earth, Mars, and other celestial bodies. Their presence implies that localized habitable environments may have existed on ancient Mars. Factor Analysis and Target Transformation (FATT) techniques have been applied to hyperspectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to identify possible serpentine and Mg-carbonate-bearing outcrops. FATT techniques are capable of suggesting the presence of individual spectral signals in complex spectral mixtures. Applications of FATT techniques to CRISM data thus far only evaluate whether an entire analyzed image (≈ 3 × 105 pixels) may contain spectral information consistent with a specific mineral of interest. The spatial distribution of spectral signal from the possible mineral is not determined, making it difficult to validate a reported detection and also to understand the geologic context of any purported detections. We developed a method called Dynamic Aperture Factor Analysis/Target Transformation (DAFA/TT) to highlight the locations in a CRISM observation (or any similar laboratory or remotely acquired data set) most likely to contain spectra of specific minerals of interest. DAFA/TT determines the locations of possible target mineral spectral signals within hyperspectral images by performing FATT in small moving windows with different geometries, and only accepting pixels with positive detections in all cluster geometries as possible detections. DAFA/TT was applied to a hyperspectral image of a serpentinite from Oman for validation testing in a simplified laboratory setting. The mineral distribution determined by DAFA/TT application to the laboratory hyperspectral image was consistent with Raman analysis of the serpentinite sample. DAFA/TT also successfully mapped the spatial distribution of Mg-serpentine and Mg-carbonate previously detected in CRISM data using band parameter mapping and extraction of ratioed spectra. We applied DAFA/TT to CRISM images in some olivine-rich regions of Mars to characterize the spatial distribution of Mg-serpentine and Mg-carbonate-bearing outcrops.
  • Preprint
    Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite
    ( 2014-10-20) Klein, Frieder ; Grozeva, Niya G. ; Seewald, Jeffrey S. ; McCollom, Thomas M. ; Humphris, Susan E. ; Moskowitz, Bruce ; Berquo, Thelma S. ; Kahl, Wolf-Achim
    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions—a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization under well-constrained conditions, we reacted centimeter-sized pieces of uncrushed harzburgite with chemically modified seawater at 300 ºC and 35 MPa for ca. 1.5 yr (13 441 h), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol% of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~4 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. Coupled mass transfer of dissolved Si, Mg, and H+ between olivine and orthopyroxene reaction fronts was driven by steep activity gradients and facilitated the precipitation of serpentine. Hydrogen was released in significant amounts throughout the entire experiment; however, the H2 release rate decreased with time. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to fresh olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed several textural features diagnostic of incipient reaction-driven fracturing. We conclude that fracturing must have far reaching impacts on the rates of serpentinization and H2 release in peridotite-hosted hydrothermal systems.
  • Article
    White and green rust chimneys accumulate RNA in a ferruginous chemical garden
    (Wiley, 2023-08-24) Helmbrecht, Vanessa ; Weingart, Maximilian ; Klein, Frieder ; Braun, Dieter ; Orsi, William D.
    Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite (“white rust”), which quickly converted to chloride-containing fougerite (“green rust”). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.