Joseph Jossia K.

No Thumbnail Available
Last Name
Joseph
First Name
Jossia K.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Seasonal temperature variability observed at abyssal depths in the Arabian Sea
    (Nature Research, 2022-09-22) Martin, M. V. ; Venkatesan, R. ; Weller, Robert A. ; Tandon, Amit ; Joseph, K. Jossia
    The abyssal ocean is generally considered an aseasonal environment decoupled from the variabilities observed at and just below the ocean's surface. Herein, we describe the first in-situ timeseries record of seasonal warming and cooling in the Arabian Sea at a depth of 4000 m. The seasonal cycle was observed over the nearly four-year-long record (from November 2018 to March 2022). The abyssal seasonal temperature cycle also exhibited noticeable interannual variability. We investigate whether or not surface processes influence the near-seabed temperature through deep meridional overturning circulation modulated by the Indian monsoon or by Rossby wave propagation. We also consider if bottom water circulation variability and discharge of the dense Persian Gulf and Red Sea Water may contribute to the observed seasonality.
  • Article
    Longwave radiation corrections for the OMNI Buoy Network
    (American Meteorological Society, 2022-02-01) Joseph, Jossia K. ; Tandon, Amit ; Venkatesan, Ramasamy ; Farrar, J. Thomas ; Weller, Robert A.
    The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
  • Article
    Quasi-biweekly mode of the Asian summer monsoon revealed in Bay of Bengal surface observations
    (American Geophysical Union, 2020-11-16) Lekha, J. Sree ; Lucas, Andrew J. ; Sukhatme, Jai ; Joseph, Jossia K. ; Ravichandran, M. ; Kumar, N. Suresh ; Farrar, J. Thomas ; Sengupta, Debasis
    Asian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.
  • Article
    Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset
    (American Meteorological Society, 2021-10-01) Shroyer, Emily L. ; Tandon, Amit ; Sengupta, Debasis ; Fernando, Harindra J. S. ; Lucas, Andrew J. ; Farrar, J. Thomas ; Chattopadhyay, Rajib ; de Szoeke, Simon P. ; Flatau, Maria ; Rydbeck, Adam ; Wijesekera, Hemantha W. ; McPhaden, Michael J. ; Seo, Hyodae ; Subramanian, Aneesh C. ; Venkatesan, Ramasamy ; Joseph, Jossia K. ; Ramsundaram, S. ; Gordon, Arnold L. ; Bohman, Shannon M. ; Pérez, Jaynise ; Simoes-Sousa, Iury T. ; Jayne, Steven R. ; Todd, Robert E. ; Bhat, G. S. ; Lankhorst, Matthias ; Schlosser, Tamara L. ; Adams, Katherine ; Jinadasa, S. U. P. ; Mathur, Manikandan ; Mohapatra, Mrutyunjay ; Pattabhi Rama Rao, Eluri ; Sahai, Atul Kumar ; Sharma, Rashmi ; Lee, Craig ; Rainville, Luc ; Cherian, Deepak A. ; Cullen, Kerstin ; Centurioni, Luca R. ; Hormann, Verena ; MacKinnon, Jennifer A. ; Send, Uwe ; Anutaliya, Arachaporn ; Waterhouse, Amy F. ; Black, Garrett S. ; Dehart, Jeremy A. ; Woods, Kaitlyn M. ; Creegan, Edward ; Levy, Gad ; Kantha, Lakshmi ; Subrahmanyam, Bulusu
    In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.